
Papers I. C.C. Conference
D.C.

Presented at
Washington

Oct. 1972

0 The -z'.nformation contained in these documents remains the copyright

of the Conf er>ence orga:ni zers and The Plessey Company Limited.

PLESSEY TELE COMMUN I CATIONS RESEARCH LIMITED,

TAPLOW COURT,

TAPLOW, MAIDENHEAD,

BERKSHIRE,

ENGLAND.

CONTENTS

A CAPABILITY ORIENTED MULTI-PROCESSOR

SYSTEM FOR REAL-TIME APPLICATIONS

FAULT RESISTANCE AND RECOVERY

WITHIN SYSTEM 250

RELIABILITY ASSURANCE FOR SYSTEM 250

A RELIABLE, REAL-TIME CONTROL SYSTEM

STRUCTURE AND INTERNAL COMMUNICATIONS

OF A TELEPHONE CONTROL SYSTEM

D.C. Cosserat

K.J. Hamer-Hodges

C.S. Repton

J. Crompton

A CAPABILITY ORIENTED MULTI-PROCESSOR SYSTEM
FOR REAL-TIME APPLICATIONS

D, C. Cosserat

Plessey Co. Ltd.
Liverpool, England

Summary

The system under connideration is a multi­
processor, multi-storage module configuration
adapted to the processing and fault security
requirements of such real-time applications as
telephone switching, message switching, and radar
systems control. Each processor accesses store
independently and asynchronously and each region
of store to which it has immediate access is
bounded by an addressing structure known as a
Capability. The capability has a dual purpose.
It acts as a protection mechanism against hardware
and software failure; and it defines a logical
unit of contiguous storage space (a "segment") out
of which all operating system and application data
structures are built. A segment may contain
either data or capabilities permitting a list
structure of interconnected segments to be
established.

Each processor executes instructions contained
in data segments, achieving linkage from segment
to segment, and in so doing manipulates the data
structure appropriately. One particularly
significant feature of the system is that it is
possible for a runninr program to make copies of
capabilities which it can store arbitrarily into
the data structure. The operating system reduces
essentially to a series of 'protected subroutines',
each subr_outine possessing just the capabilities
required to gain appropriate access to the data
structure. There exists therefore a graded
approach to storage protection and a complete
lack of the vis~al division into 'special' and
'normal' modes of machine hardware operation.

Introduction

Computer systems are characterised by their
ability to provide 'general purpose' solutions to
specific logical problems. In the telecomm­
unications field, in particular, the computer may
be used as a centralised control mechanism which
replaces the logical functions often formerly
provided by distributed hardware devices. Thus,
for example, the centralised computer system can
be used to control telephone switching hardware
which itself contains little or no sequential
logic either from a mechanical or electronic
point of view, Similarly a computer may be used
to provide automatic routing of messages in a
message switching network; automatic information
retrieval, computation, and display in an air
traffic control environment; centralised control
of industrial processes; network control of
distributed systems such as electricity and gas

grids; area control of road traffic schemes; etc.

Three important facto=s relevant to these
systems are security, growth and obsolescence.
Real-time systems whose operation affects a lE.rge
number of human beings must be capable of with­
standing long periods between system failures.
In some cases this requirement arises from an
economic or strategic need (in telephone switching
systems, for example) and in others (such as air
traffic control) human lives are directly involved.
The second factor arises because telec011DDunications
networks have traditionally been designed so that
increases in size and 'traffic' carrying capacity
can be accommodated over a period of years.
Thirdly the nature of telecommunications networks
and, in particular, the amount of capital invest­
ment required implies that systems installed today
should not become rapidly obsolescent.

Traditionally, the kind of computers that have
been applied to these real-time control tasks have
emerged from two quite different stables; on the
one hand, system designers have made attempts t_o
adapt computing equipment developed in the data
processing environment to the requirements of real
time control, and on the other hand engineers who
have experience of existing electromechanical and
electronic techniques have tried their hand at
producing computer systems. This dichotomy of
discipline has led in the past to a polarisation
of ideas on how real-time centralised control
systems .;hould be built. As a broad generalis­
ation it might be said that the computer
engineers have failed to design systems which have
the security and expandability features so
characteristic of telecommunications systems,
whilst the telecommunications engineers have
failed to design systems which promote to the full
the control flexibility afforded by software
technology.

In order to illustrate the problems confronting
the computer system designer in this field it is
useful to select a particular case for analysis.
The case chosen here is that of the telephone
switching control problem because it represents a
particularly comprehensive example of conflicting
requirements. Designers who are interested in
other real time application areas will, however,
recognise many analogies with their own problems.

In the case of telephone switching control, it
was thought for a long period of time that the
major problem involved was the tricky technological

---- ~-----------

one of designing a centralised control device to
obey· the necessary logical steps to control the
switches involved in setting up a circuit from
one telephone subscriber to another. . This was
obviously the immediate and central task and it
was tackled in a variety of different ways. Some
solutions involved hardware-wired logic as the
means of centralised control, others involved
the use of a computer-like device which fetched
instructions from a read-only store, and yet others
utilised a true computer configuration in which
a processing unit fetched instructions from and
modified data in, a read/write store, At the
beginning, it did not really seem to matter very
much which particular system was chosen because
the central problem of switch control was iden~ical
in all cases, and often the decision as to which
system to adopt depended on the design experience
and background of the individuals concerned.

On the basis of a computer's ability to set
switches in a telephone network, it was also
arguable that there were no obvious advantages
in any of these approaches over the previous
electromechanical systems. Certain peripheral
advantages were said to accrue such as 'system
flexibility', but what exactly did this mean, and
how was such a nebulous term to be quantified?
Nowadays, it is possible to enumerate a number of
facilities provided by a computer controlled
telephone switching system. For example,

automatic fault diagnosis
centralised maintenance
network monitoring
automatic accounting
integrated manual assistance facilities
special subscriber facilities

All these factors were, of course, recognised
by the advocates of centralised control, but they
were regarded as a bonus to the more immediate
problem of the switching task itself. A closer
examination of these and other similar facilities
leads, however to a new concept: a centralised
computer system for telephone switching control
must be regarded as an administrative unit which
interfaces p::imarily with the staff of the tele­
phone administration. Except for the provision
of special facilities, the interface to the tele­
phone subscribers is of secondary significance
since it necessarily remains very much the same as
in all previous systems.

In a computer controlled telephone network all
the above facilities can be provided in a central­
ised manner. Fault diagnosis and maintenance can
be handled by a relatively small staff via inter­
active video-displays; network monitoring programs
can be similarly controlled by a few staff at a
centralised location. Automatic accounting soft­
ware can remove the human data preparation link,
passing metering information from individual calls
into a form suitable for the direct printing of
accounts, Manual board operators can communicate
via similar video displays on which all inform­
ation pertinent to the call is recorded. The
operator has sufficient control to achieve the

required objective without the necessity of any
administrative overheads, such as the filling out
of dockets: instead, the system records the call
details and cost automatically and routes it
directly through to the r,ccounting software system,
This approach implies a ur,ification of system
design and, where necessary, the derivation of
simple and standard ergonomic interfaces with
those staff who control it, .The activities
mentioned above are suDlllarised in Figure 1.

suasc111e1•l1
s•1c••L

IACILITIII
SWlfCMING HA.aowa•r

TlLIPNONl
SWITCHING
SIG,.ALS

C ltrilTAAL tSlO

CO.,flUfUl SYSTlt.1
COMPUTIA SVSTIM
CONTROL

PRINTED
----- ACCOUNT$,

FAut-1 OtAGNOS:I
& liilAINTlNANCl
IWGtNllAS

NlTWOAll
MONITOA1NG
[hlGltifC:lRS

MANUAL
A\ll\U.NCI
OPI.AAtOA.I

Fig. l ORGANISATION OF A CENTRAL
PROCESSING SWITCHING UTILITY

Once the centralised control system is regarded
as an aid to administration of the network, and
once it is understood that it is here that the
real.economic advantages lie, the requirements of
the centralised computing system necessary to
support su~h activities become very different from
those needed to handle the switching problem it­
self. In particular it is clear that wired logic
or read-only program storage systems will not
provide the necessary flexibility; and it is clear
also that comprehensive software facilities are
required to sensibly tackle the application
requirements of what has become a real-time system
with multi-access control.

The General Purpose Computer

It is clear from the foregoing telephone
switching example that the problems of large and
comprehensive central control systems are not
amenable to solution either by dedicated tele­
communications processors or by existing computers
designed for the data processing environment.

Here is a list of some of the more obvious and
important requirements:

ABILITY TO RUN REAL-TIME PROGRAMS
MULTI-PROGRAMMING FACILITIES
MULTI-ACCESS FACILITIES F'OR MAN/MACHINE

CONTROL
STRICT INFORMATION PROTECTION BETWEEN

PROCESSES
THE CONVERSE ABILITY TO SHARE INFORMATION

BETWEEN PROCESSES WHERE REQUIRED
HARDWARE EXPANDABILITY IN INDEPENDENT

INCREMENTS OF STORAGE AND PROCESSING POWER
AUTOMATIC RECONFIGURATION FOLLOWING SYSTEM

FAILURE
FLEXIBLE INTERFACING TO DISTRIBUTED

EQUIPMENT AND TO MAN/MACHINE DEVICES

In the light of these requirements, and the
fact that existing data processing systems do not
match up to all of them, we prefer to reserve
the term'general purpose computer'for a system
which meets all these characteristics. Given
this definition, it becomes clear that neither
existing data processing systems nor telecommuni­
cations processors can in any sense be regarded as
'general purpose'.

Design Considerations

In order to achi-ve the above design objectives
a combination of hardware and software technologicai
innovations must be employed. One particularly
important feature involves system expansion.

The computer configuration must be capable of
expanding· in two important aspects: there should
be no practicable limits on the size of the fast
store; and th~re should be as wide a range as
possible of processing power. In each of these
cases, the hardware should be expandable in
reasonably small increments so as to permit a
smooth r·ate of increase in capital investment in
the system. It is particularly important that
increases in storage and processing power can be
achieved independently, since there is no obvious
correlation between one and the other over a wide
range of possible systems. Therefore a true
multi-processor system which can contain a
variable number of processing units and a variable
number of storage modules is the ideal for the
application.

The system must be resilient against both solid
and transient hardware failures, and similarly
against software bugs (which have many of the
characteristics of trausient hardware failures).
This requirement means in practice that the system
should be capable of automatic reconfiguration (i.e.
switching out the failed hardware module) and
recovery (i.e. the ability to return to the execut­
ion of a coherent program and data base).

The generdl purpose computer must also be capable
of interfacing freely with a wide range of distribut­
ed telecommunications equipment, which may be remote
from or local to the computer itself, and also must
interface with man/machine devices such as video-

displays and other computer peripheral devices.

Design Conflicts

The above remarks are addressed to some of the
more obvious and important features of the general
purpose computer. But some of the design require­
ments conflict and it is necessary to examine
these conflicts in some detail.

The first design conflict arises from the
requirement on the one hand to use the processors
in a 'work sharing' mode to meet the requirements
of a multi-programming, multi-processor system and
on the other to respond quickly to interrupts
generated by signals from the real-time system
under control. Each processor must inherently be
capable of obeying any program steps in the system
(a functional approach involving the division of
processors to specific tasks would conflict with
the multi-processing requirement aiid with the
need to expand the system with little software
re-organisation).

The execution by a processor of a program
is conventionally termed a process. In a
multi-processor system there can clearly be as
many pr~cesses in simultaneous execution as there
are pro:essors, but there may be an undefined
number ~f additional processes which are blocked
awaiting logical events or are freed but have no
processor on which to run. When a process runs,
the processor contains in its hardware registers
information relevant to that process and when the
process blocks, that information must be stored
away. In a processor with several registers, the
storing of their contents may involve many store
accesses. An interrupt is caused by an event in
the outside world which raises a signal into the
computer system. This causes the processor to
cease its present activity (i.e. to temporarily
block the running process) and to execute an
'interrupt process' instead. The changeover
from one process to the other involves the storing
and loading of registers and hence there is a
processing time 'overhead' on each interrupt.

In a single processor environment, this
problem is often solved by the use of a second set
of registers reserved for the interrupt pr,cess.
In a 'work-sharing' multi-processor system this
approach is not possible because the interrupted
process is still logically free to run and may be
picked up immediately by another processor. 111
this situation, the information concerning the
process which is stored away in the first
processor's register set is completely inaccess­
ible to the second processor. Since the common
medium of communication between processors is the
store, it follows that the register information
of an interrupted pro·cess must be written to store
where it may be retrieved subsequently by another
(or the same) processor. This register storing
overhead is a theoretical limitation on a true
multi-processor system and as such represents a
design conflict between the attributes of such a
system and the requirement to respond quickly to
interrupts.

The second design conflict arises because of a
potential fault security hazard in the universal
sharing of store by all the processors in a multi­
pr~cessor system. In order to provide a system
which is expandable in independent increments of
storage and processing power it is necessary to
abandon the usual concept of a computer as
'processing unit plus store'. The corollary
ot this divorce between processor and dedicated
store is that a storage module belongs to no
processor in particular and is equally accessible
from all processors. Such a system organisation
achieves the haruware modularity constraint at
the expense of another; namely, resilience
against store corruption which could lead to
undetectable system failure. The concept of a
multi-store, multi-processor system, which is so
attractive from the point of view of modularity,
is wide open to the possibility of storage
corruption from any processor that fails trans­
iently or permanently. Therefore there is a
design conflict between 'equal availability of
all storage locations' and 'potential damage to
storage contents by a faulty processor'.

System 250 - A General Purpose
Computer

An attempt has been made to embody the general
design principles described above in the Plessey
SYSTEM 250 central processing system. This
system is designed for precisely the range of
applications described and in particular for
the control of administration and switching
functions in a telephone switching environment.
The design includes the following features which
are compatible with and a consequence of the
requirements of a general purpose computer.

Firstly, the hardware is designed as a multi­
processor, multi-storage module configuration as
represented in Figure 2. Each processor may
access any storage location in any store module
over its own bus. Thus the modularity and
incremental expansion requirements of the general
purpose computer are satisfied.

Secondly, each processor is capable of
detecting a range of hardware fault indications
which will cause a fault interrupt to bP- auto:..
matically generated. The processor discontinues
execution of the current process and switches to
a fault interrupt process instead. The instruct­
ions obeyed by this process are, of course, fetched
from store in the usual way but, should a subse­
quent fault interrupt be generated in that processor
during the time that it is executing the fault
interrupt process, the processor steps to the next
storage module and recommences the process by
fetching instructions from it. Thus, a failure
in the storage module itself or corruption of its
co~t~nts does not cause a permanent failure of
the pro~essor which received the original fault
interrupt. The essential hardware mechanisms
are therefore provided as a basis for an auto-

. matic reconfiguration software system.

CPU

CPU

CPU

FIG. 2

...... c_:-.t::_::_j STORE
MODULE

STORE

MODULE

STORE
MODULE

CPU· CENTRAL PROCESSOR UNIT

MUX • MULTIPLEXER

SPA· SERIAL/PARALLEL ADAPTOR

OS • DATA SWITCH

PI U • PARALLEL INTERFACE UNIT

SIU· SERIAL INTERFACE UNIT

TYPICAL HARDWARE CONFIGURATION

Thirdly, a flexible interfacing medium enables
the system to be adapted to a wide range of
peripheral equipment. The interconnection
network is in the form of a bit-serial medium which
transfers 'messages' between computer system and
the periphery in both directions. A standard
serial interface makes it possible to build a
structure of 'primary' and 'secondary' electronic
switches to suit a particular configuration and
to interface simply to man/machine interactive
devices. This satisfies the requirement that a
general purpose computer should be connectable

in a flexible manner to a wide range of telecomm­
unications and other equipment.

Given the above general featur1is • it is now
necessary to describe how the system overcomes
the two basic design conflicts mentioned above.

Interrupi:s

The first conflict concerns the incompatibility
between a true multi-processor system and the
'overheads' involved in servicing an· interrupt.

An examination of this problem led inevitably
to a study of the history of interrupt mechanisms.
Very early computers which had no interrupt
systems suffered from the major disadvantage that
tests of peripheral device status had to be inserted
into the program at regular intervals. A natural
consequence of this was the design of interrupt
hardware which performs this testing between the
execution of each instruction. When an interrupt
occurs, the processor ceases to execute its
current process and switches automatically to the
execution of an interrupt process. In the case
of input data. this process typically does nothing
more than place the information in a software
organised queue in store. This queue is unloaded
by a normally scheduled process and the information
is then analysed and used as appropriate for the
application. In its role of executing the
interrupt process, the processor is behaving
essentially as a hardware queueing mechanism and
can therefore be replaced by a hardware queue in
the interface between the serial medium and the
processing system. In SYSTEM 250 the unit known
as the Serial/Parallel adaptor (see Figure 2)
performs this function and. typically, can queue
up to sixteen messages to and sixteen messages
from the serial medium. A normally scheduled
process unloads the messages from the hardware
queue directly.

Another input/output requirement involves the
transfer of data from magnetic backing storage
devices such as drums and discs. Since it is
usually uneconomic in conventional systems to
withstand an interrupt for each word or character
transferred, the standard approach is to use
channelling hardware which moves data directly
between 'burst mode' devices and store. During the
transfer the processor is free to perform its
usual functions and only receives an interrupt from
the channelling hardware when the data transfer is
complete. The usual characteristic of channelling
hardware is that it is both elaborate and expensive;
and it is, perhaps. unfortunate that there appears
to be a tendency amongst computer designers in the
direction of more elaboration and more expense.
Some channellers are completely hard-wired, others
obey special instructions fetched from store and
begin to look very much like special purpose
computers. SYSTEM 250 has taken this trend to its
logical conclusion and utilises the standard
processor module as a channeller. This approach
has two very important advantages. Firstly. in a
secure system there is no additional 'sparing'
problem. Whereas it would have been necessary to

provide a second channeller as a fault security
backup. the additional processor now required for
channelling work can share the existing spareproc­
essor(s) required to maintain processing security.

Thus. in the majority of system configurations.
the cost comparison is between one processing
module and two channeling modules. Secondly.
there is now no requirement for interrupt gener­
ation at the end of a data transfer because the
processor itself can continue to process what
would have been the interrupt response routine.

The two features of SYSTEM 250 described
above. namely hardware message queueing and the
use of the processors as channellers. has
abolished the need for external interrupts and has
therefore resolved the conflict between interrupts
and the efficient operation of a true multi­
processor system. Additionally it has provided a
cheap and conceptually elegant form of input/output
control.

It should be observed. in conclusion, that
there are still three mechanisms in a SYSTEM 250
processing module which can force a change of
process: the first is due to a program trap
condition; the second occurs when the processor's
interval timer clock value reaches zero; and the
third is due to the occurrence of an internally.
detected fault condition. Although these
co~ditions may colloquially be referred to as
1 interrup_ts 1 • the common characteristic is that in
no·case is the condition externally imposed. The
abolition of inter-processor and device-processor
interrupt lines has a significant effect on the
security of the hardware anrl makes it simpler to
isolate processors and peripheral units following
hardware failure.

It can be seen from the above discussion that
the requirements of the general purpose computer
are highly interactive. Both security require­
ments and the need for interrupt free operation of
the multi-processor system affect the input/output
economics in an unexpected way. By turning these
conflicting constraints to advantage rather than
by adopting some conventional compromise solution.
it has proved possible to realise a simpler and
more economically attractive solution to the
problem.

Storage Protection - The Capability

The second design conflict which must be
solved in the quest for the general purpose
computer concerns the potential for storage
corruption in a true multi-processor system. Two
separate fears may be expressed on this subject,
Firstly, there is the fear that processors which
have access to the whole of the storage system
may corrupt the program and read-only data held
there. This will almost certainly result in a
catastrophic failure of the system with instructions
and data constants coverted to random values.
This problem has led some designers to criticise
the nature of an alterable store for critical
real-~ime applications and to suggest that the
older schemes of wired logic processors or of

computers with their own dedicated storage modules
are more adapted to the requirements.

As wi 11 be shown below, the nature of the
problem is not so much the volatility of the
storage medium itself as a lack of discipline on
the part of the processors in their attempts to
access it. It is this latter aspect to which
q~tention has therefore been turned in an attempt
LO preserve the general purpose features of a
freely alterable storage system.

The second fear is that, even in a system where
read-only and read-write information is strictly
segregated, there is still the possibility that
faulty processors will obey random instruction
sequences, attempt to obey read-only data aG
instructions, and alter read-write data values
to which the currently obeyed program has no
logical access. In short, even in a partitioned
system of this type there is still much scope for
corruption of store and therefore of system fail­
ure.

Solutions to this information protection
problem typically involve the use of base-limit
protection registers which partition the store
into a number of contiguous regions or segments.
Further protection measures may be applied to
restrict access, such ~s the 'rings of protection'
scheme suggested by Graham (reference 1). What
is required, then, is a mechanism which permits
the progrannner precisely to define those data
structures which will be made accessible to a
running process and, by default, those which will
not. There must be no system feature which
prevents information sharing where this is
logically required, and conversely, no system
feature which permits information sharing where
this is not logically necessary.

The solution which has been chosen in SYSTEM 250
involves the provision of hardware protection
features which permit a given running process to
access only those regions of store that the
programmer originally intended. This is achieved
by means of a universal segment identifier known
as a capability. A capability is an invarient
address which defines (a) the absolute location
of a segment of storage, (b) the length of the
segment, and (c) the kind of access permitted
(read-only, execute only, read-write, etc.).
What distinguishes a capability from a traditional
base-limit protection address is that it can be
freely copied by the running process itself (i.e.
it can be loaded into a machine register and can be
stored into a storage location), but that its con­
tents can in no way be altered. The concept of
a capability originated in the work of Dennis and
Van Horn (reference 2), and was proposed in the
present freely copiable form by Fabry (reference 3).
The use of the capability mechanisms in SYSTEM 250
has already been described in detail elsewhere
(reference 4) and no further elaboration will be
attempted here.

The essential feature of a capability is its
ability to permit the currently running process

access to carefully controlled and logically
necessary regions of the store. The hardware is
arranged so that there is no way in which a process
can manufacture dat~ patterns and convert them into
capabilities; thert.fore, there is no way in which
it can gain access to, and possibly corrupt, other
regions of the store. This, then, is what is
required in order to prevent the collapse of a multi­
processor system due to storage corruption by a
single processor.

The corollary of the above is that, when faults
do occur in a processor, the strict control of base,
limit and access conditions assist the system
greatly in the fast detection of failures.

Software Implications - The Operating System

The capability was primarily developed as a
mechanism for storage segmentation and information
sharing rather than for hardware protection. Of
course, its protection features were always
recognised in the context of protection between
programs and it is here that the major software
implications lie.

One of the criteria of the general purpose
computer is that it should be capable of information
sharing. This is a critical requirement for many
real-time applications where many transactions are
represented by processes sharing a common data
base, but may also be considered a general require­
ment of any computer system in which multi-access
facilities are required. Computer systems which
do not allow good information sharing character­
istics must resort to software control of shared
storage and sometimes to the provision of
separate copies of program for ·each process which
requires to obey it. We may restate the require­
ments as follows: a multi-processor system should
be able freely to execute code re-entrantly and
should be able to access shared information wl1en,
and only when, this is a requirement of the progrdm
logic. The capability mechanism gives us exactly
this property. Information sharing is permitted
when required, and entirely denied when access is
not logically necessary.

The protection afforded by the capability
mechanism is extended in SYSTEM 250 to the inter­
faces between subroutine linkages. A program can
only perform a subroutine call if it possesses the
necessary capability for the subroutine. The
access condition set into that capability permits
'entet access only: that is, the capability can only
be used to perform a subroutine call and not to gain
access to the called subroutine's capabilities and
hence to its data structure. Therefore the called
subroutine's data structure is completely inaccess­
ible to the calling routine. Similarly, once a
routine has performed a subroutine call, the
capabilities awned by that routine are denied to
the subroutine and this satisfies the converse
condition, that the calling routine's data
structure is completely inaccessible to the called
routine. Information interchange between two
such routines is therefore strictly limited to that
which the prograrraner intended: information may be

passed as parameters in the form of data and/or
capabilities in the machine registers; or
information may be made permanently accensible to
both calling and called routines, by placing in
each routine's data structure a capability point­
ing to the shared information.

Given the inter-routine capability protection
mechanism, it ia now possible to construct all
programs in a subroutine hierarchy irrespective
of whether these programs are conventionally
regarded as part of the application software or
part of the Operating System software. This
fact has had a dramatic effect on the design of the
Operating System for SYSTEM 250 because it permits
us no longer to regard it as a monolithic software
package protected from application software
corruption by means of a single impenetratable
barrier. Rather, each logical function in the
Operating System is treated as a distinct
protected subroutine so that the storage protection
philosophy within the Operating System structure
relies on the same capability mechanisms as those
utilised by the application progr~ms. The
result of such an organisation is that the system
is not split into separate application and Operat­
ing System monoliths separated by a 'special
supervisor mode' of hardware operation and the
distinction between an Operating System and an
application subroutine becomes one of administrative
significance only.

List Structured Addressing

It has been stated previously that what
distinguishes a capability from a conventional
base-limit protection mechanism is the ability of
the running process to perform load and store
operations on capabilities by means of hardware
instructions embedded in the program. This con­
trasts strongly with systems in which the reloading
of base-limit registers is undertaken indirectly
by 1oftware in 'supervisor mode'.

The free copiability property of capabilities
enable ■ the progralliDler to use them as invarient
addresses in an arbitrary list structure and,
indeed, an unlimited number of copies of a given
capability can be generated. This distinguishes
the capability mechanism from other invaricnt
addre■ s schemes, such as the Burroughs descriptor
(reference S) which essentially restricts the data
structure to a tree-like representation.

The arbitrary information sharing properties of
the capability are exploited in the SYSTEM 250
Operating System to provide, in a simple manner,
multi-progra11111ing and multi-access facilities.
Firstly, the ability to arbitrarily share code
segment ■ mean■ that all Operating System routines
can be obeyed re-entrantly by many processes.
Secondly, it is possible to strictly protect the
information belonging to one multi-access user from
that belonging to another. And, thirdly, it is
possible for multi-access usersto share information
in a controlled 1U11nner through a system of direct­
ories. The directory structure is similar in con­
cept to that provided by the MULTICS Operating•

System (reference 6) but it differs in the following
important respect: whereas, the directory structure
in the MULTICS system is organised as a tree, the
directory structure in SYSTEM 250 can be organised
as any arbitrary list. Thus, the inter-connection
of directories exactly mirrors the hardware level at
which the capability mechanism permits an arbitrary
interconnection of segments. This feature can be
exploited to give precise information sharing
properties to a system comprising groups of users
of various classes. Our telephone switching
example illustrated some of the many man/machine
interaction requirements involving the sharing of
some information. However, many of the classes of
user are performing quite specific and separate
tasks which do not require a great deal of
administrative interaction. This is reflected
in the organisation of directories to which these
users are given access: it is the responsibility
of the administration to organise the directories
into a suitable list structure.

Conclusions

In conclusion, therefore, it has been shown
that the requirements of computer systems in
telecolll\llunications applications are far removed
from the facilities conventionally provided by
either telecommunications processors or data
processing machines. The facilities of a
'general purposP. computer' suitable for these
applications have been derived, the main features
being incremental expandab~lity of storage and of
processing power, automatic reconfiguration of the
system following hardware or software failures,
and the simple interconnection to distributed
tulecommunications equipment and to man/machine
interface devices.

It has been argued that to satisfy the above
features, a computer system should be organised
as a multi-processor with each processor equally
capable of sharing the work available. This
re~uirement in turn leads to two design conflicts
which have been resolved in the design of the
SYSTEM 250 computer system by, firstly, the
abolition of external interrupts and, secondly,
the use of a universal segment identifier known as
a capability.

It has further been illustrated that the design
solutions to these two conflicts have been turned to
our own advantage because the problems involved have
forced us to think out from first principles the
necessary and sufficient features of a true
'general purpose' computer sys;em. In particular
we have been able to avoid an expensive and self­
defeating approach to the production of channelling
hardware, by recognising that the trend in this area
towards increasing complexity implies a trend to­
wards the use of standard processing equipment; we
have been able to capitalise on the protection
features of the capability mechanism by the design
of a modular Operating System organised as a series
of protected subroutines; and we have used the
concept of free copiability of capabilities to
reflect into the user terminal level of the system
the idea of an arbitrarily interconnected structure

of directories.

In particular, the capability mechanism, which
is such a central feature of the SYSTEM 250 hard­
ware architecture, enables-us to claim three
quite distinct achievements: the protection of
information in a multi-processor system against
hardware failure, the modularisation of Operating
System and application software into a protected
subroutine hierarchy, and the efficient and
arbitrarily constrained sharing of data structures
between competing processes. This leads us to
believe that this concept represents a significant
and essential advance in both hardware and soft~
ware technology and that SYSTEM 250 provides both
the sufficient and the necessary features of a
'general purpose computer'.

References

1. Graham, R.M. "Protection in an Information
Utility", Comm. ACM, 11, 5
(May 1968) pp. 365-369.

2. Dennis, J.B, and
E.C. Van Horn 111Prograllllling Semantics for Multi­

programmed Computations", Comm.
ACM, 9, 3 (March 1966),

3. Fabry, R.S.

4. England, D.M.

5. Burroughs
Corporation

pp. 143-155.

"List Structured Addressing".
PhD. dissertation - University
of Chicago, Illinois, (June 1970).

"Operating System of System 250".
Proceedings of the International
Switching Conference, Boston, Mas.
(June 1972).

"The Descriptor" - A Definition
of the B5000 Information Process­
ing System - Detroit, 1961.

6. Bensoussan, A,"The Multics Virtual Memory".
Clingen, C,T, Proc. Second ACM Symp. on
Daley, R.C. Operating Systems Principles,

Princeton, N,J. (Oct. 1969}.

Acknowledgement

I would like to acknowledge the contribution
of my colleagues who were involved in the design
of the System 250 and, in particular, the valuable
contribution of M. O'Halloran who understood before
most of us what Operating Systema were all about.
I would also like to thank the Directors of the
Plessey Company for permission to publish this
paper.

FAULT RESISTANCE AND RECOVERY WITHIN SYSTEM 2.50

K. ~. Hamer-Hodges

PleHey Co. Ltd.
Liverpool, England

SUlllllat'y

This paper describes some of the aspects of the
Plesaey SYSTEM 2.50 real-time processing system, and
is an accompanying paper to those presented by
my colleagues from Plessey U.K.

The requirements of a Real Time processor
system suitable for the control of a c0111Dunications
application are evaluated. The ability of SYSTEM
2.50 to fulfil these requirements and the hardware
architecture which provides the characteristics
10 urgently required by the communications industry
is described.

A general description of the hardware of the
processor is included and the use made of
capabilities in ensuring the detection and isolation
of fault occurences within the working system is
described. Particular attention is drawn to the
fault recovery sequence and the diagnostic
facilities which enable the working system to live
through fault conditions and offer the grade of
service required by the application,

General Introduction

SYSTEM 250 was designed at the outset to meet
the exacting control requirement of telephone or
data message switching systems. It should be
appreciated that this application demands an
exceedingly high standard of performance in almost
all of the areas considered important in Real
Time applications, Convential computer systems are
inadequate when examined against the essential
requirements already established by conventional
switch eq~ipmenta, The characteristics of a
computer syatem which will satisfy the stringent
requirement ■ of exchange control are suimnarised
un~er the following headings:

Continuity of service
Eaae of expansion
Ability to Evolve
System Partitioning and Security
Flexibility
High Power/Coat Ratio

Continuity of Service

The Britiah Poat Office has devised a slidin«
Scale defining the allowed minimum reliability of
telephone exchange control equipment. The scale
ranges over 1teps from failures of the control ·
equipment of leas than 15 seconds which can be
tolerated up to SO time ■ per year, to failures of
more than ten minutes which should not occur more
than once in SO years. These reliability figures
must be maintained despite:

(a) The existence of undetected software error•
within the ayatem.

(b) Occasional on-line expansion or modification
of both the hardware and the software component,.

(c) The need for long periods of unattended
operation.

Ease of Expansion

A further requirement is that each individual
system should be economically viable from the date
of first installation. They must offer a growth
potential such that the system is capable of
ON-LINE expansion of any facility (e.g. Storage,.
Processing Power, or Input-Output Capability) by a
factor of three during the expected life of 25
years. These extensions should not require al­
teratfons or re-compilation of the existing prog­
rams or cause any loss of service,

Ability to Evolve

A computer system which is expected to be
operational for more than two decades can only
remain economic if its architecture permits .the
inclusion of advances in hardware technology. The
software architecture must also provide the
flexibility necessary to absorb the undoubted
changes which will be required to provide the,
as yet, unforeseen facilities to be offered
in the future.

System Partitioning and Security

The system hardware and software must be
partititioned in a secure manner such that
information transfers can be monitored, and
faults or errors detected quickly and contained.
The aim is to prevent corruption of and/or un­
authorised ,.ccess to system resources, in
particular storage media, with minimal overheads
in power, coat and complexity.

Flexibility

The control system is required to be flexible
in both the hardware and software architecture
such tlu1t a wide range of configurations with
differing requirements can be controlled by
differing configurations which minimise the cost
of each system. In particular the system must
be capable of efficiently controlling large
numbers of low activity peripheral devices,

Introduction to System 2.50

SYSTEM 2.50 is a modular multi-processor
system, The central system modules are
Stores, Processors, and Multiplexors. Standard
and non-standard Peripheral devices of all types

can l,e attached as will be described subsequently.
Twenty four bit word lengths are used for all
memory addressing, instruction formats, and data
storage. Thus the total memory capacity is in
theory in excess of 16 million words. The inst­
ruction repertoire has been simplified to twe~ty
seven basic operations, with inter-register, store
and register or literal options available when
meaningful.

Peripherals Devices are addressed via
Control and Data registers which appear to the
Processor to be exactly.similar to the normal random
access storage connected to the Processors, and it
has, therefore, been possible to eliminate all
specific peripheral handling instructions. Inate,.
the normal Load Register and Store Register inst­
ructions arc used, with addresses which specify
the appropriate register within the desired
peripheral device.

System Architec~ure

Interconnection of the Processors to
attendant storage and peripherals is achieved over
a 60 signal bus system, each Processor having an
individual bus. Interface Units are used to
attach stores and peripherals to these buses.
See Fig. 1.

STORE S~E

INTERFACE INTERFACE
UNIT UNIT

I

PROCESSOR PROCESSOR

I

The function of the Interface Unit is to recognise
requests for access to the module , resolve
contention between individual requests from
separate processors, and to allocate each request
a cycle of access to the module. A system with
up to eight processors is currently possible, witb
each of the Store Modules equipped with an 8 po~t
Interface Unit. Peripheral Deviceo, however, are
equipped with only 2 port Interface Units,
When, therefore, there are 3 or more proceesors,
pi!ripherals connect to a Peripheral Bus systmn,
driven by Multiplexors which can be equipped with
8 ports. Thus the more expensive 8 port
Interface Units are not required throughout the
Peripheral area. Two Multiplexors are required
for security, and if either one should fail all
traffic is passed through the alternative unit.
See Fig. 2.

Up to 40 Modules can be attached to each Bua,
over distances of 100 metres.

Only high activity, or fast speed devices,
need be connected directly to the Bus system, e.g.
Backing store devices. Low activity or slow
speed devices such as user terminals or the
appli.cation terminals of a real time system are
connected to a serial data collection and
distribution system known aa the Serial
~e-iium. See Fig. J.

-
PERIPHERAL !PERIPHERAL

DEVICE DEVICE

·-
INTERFACE INTERFACE

UNIT
' I UNIT

Typical two Processor system

PERIPHERAL PERIPHERAL PERIPHERAL
DEVICE DEVICE DEVICE

INTERFACE INTERFACE INTERFACE
UNIT UNIT UNIT

I l 1

STORE ! STORE STORE

INTERFACE INTERFACE INTERFACE MULTIPLEXOR MULTIPLEXOR I UNIT UNIT UNIT

I I I I I l l l I I I I I l

I

I I

PROCESSOR PROCESSOR PROCESSOR PROCESSOR

Fig 2 Expanded Processor system showing Multiplexors

A,rLltATION DEVICES

TELETYPE IIUOH ru ■CH

SEP.Ill
PAI\Allll
IDHTOII

IN T(P.flCl
UNIT

TO I HOH T Ml '"OC(SSOIIS

Fig 3 The Serial Medium
=

Sfl\lAL
Pllllll l l
ADAP!OI\

IN l(RFAC(
UNI!

The Serial Medium is controlled by a device
connected to the Bus system and known as the
Serial Parallel Adapter (SPA), Packets of address
and data are collected or distributed by the SPA,
via a cascaded arrangement of Data Switches which
multiplex and demultiplex the message paths,
Tarl'linals can be connected to the Serial Medium
at any switch outlet so that some devices may be
connected at the first switch others at subsequent
switches. Each device has a unique address which
is used to route outgoing messages to the device,
and is assembled during incoming messages to the
S•A. Check codes are used to validate all
message transfers.

Each device which is connected to the Serial
Medium is equipped with a 2 port Serial Access
Unit for connection to two separate Serial Mediums.
This is done for security of communication if
either path should fail.

The modular structure of the SYSTEM 250 has
been arranged so that individual system
parameters can be matched in the most economic way
possible, Stores for example can be built up in
units of 8, 16 or 32K in slow, medium or fast
access times ranging from ~s to 300ns to match
the data storage requirements. Numbers of
processors can likewise be matched to the work
requirements and the security requirements.
The number of peripheral terminals can similarly
be equated to the requirements of each installation.
Further the System can be expanded in small steps
by the addition only of the required module.

Capabilities

Each Processor has access to all modules
connected to the system. Consequently each
Processor represents a security hazard i.f either
a hardware fault or a software error ,.·ould
corrupt a location by accident. The concept
of Capabilities has therefore been implemented
in the Processors to protect against corruption
of invalid areas of storage, including
Peripheral devices. Reference 1 discusses the
necessity of capabilities and provides more
detailed references. Capabilities are
descriptors which identify the separate 'logical'
entities within the system and the users
access rights to the logical block. The
Operating System loads these logical blocks into
physical address space and allocates the Base
and Limit address values accordingly via a map
known as the System Capability Table.

I YN(.. $[•oo•rss I
I IN(&CCUS ,1tLD I IN(LIMIT A001£SS -

IIIEAO 0.-TA PERNffE 0

I

I WRIT(DATA P[RMITTf.D I

! I EltCUT[D DATA PE.IIMITT[O

I ltfAD CAPAIILITY PflU1111nEO

WRITE CAPABILIT'f' P[IMITTED

fNTEA CAPAIILITY P[AMITTEO

SPA.A[

!.!i.; Th• Capability format

The Hardware of the Processor provides eight
Capability Registers into which can be loaded
the Base, Limit, and Access field of se~arate
addressable blocks required by the program.

I

It is emphasised that the use of capabilities
in no way.restricts the flexibility of
programming at writing time. The function of
capabilities is to ensure that once defined by
the program, the limits (Base, Limit and Access
Rights) are observed by the hardware and the
process at run time, even under fault conditions.

Thus capabilities are a valuable mechanism
in protecting against the ty?e of fault which
causes the progressive corruption and final
breakdown in a multi-processor system. The
basic aim in using capabilities is to restrict
the effect of a fault to the currently running
process, and to identify the existence of a
fault immediately it occurs.

Processor Architecture

ln order to understand the principles of
system operation it is necessary to describe
the architecture of the Processor • Reference
2 describes many of the hardware aspects of the
processor which are not described in detail here.

Co

C7

Do

07

Lii,ilT __ _

STORE

TYPICAL
ILOCll

PROCESS
CAMBILITY

POINTER
8LOCK

CURRENT
CODE

BLOCK

MASK REGISTER l
}

MOOIFIER CENERAL
t----------1 REGISTERS ACCUMULATORS --------------------.-J

There are eight fifty bit (48 + 2 parity) general
purpose capability registers CO-C7. Conventionally
C7 is required to hold the currently executed code
block and C6 defines the Process Capability
pointer block, which in general defines the
working set of 'capabilities' available to the
code block in execution •. The remaining registers
CO-CS are loaded by a standard instruction,
'Load Capability', under programmer direction.

There are eight twenty four bit data
registers DO-D7 all of which can be used as
accumulators, and seven of which can be used as
address modifiers. In addition to these two
sets of working register the hardware provides

,further 'hidden' Data and Capability registers
required for efficient operation,and these cover
timer registers, indicators, etc.

All memory addressing is performed by the
addition of a selected Base value of capability
register to an offset (derived from the
instruction). Before any store operation is
performed this final memory location is then
checked to be greater-than the Base value,
since negative modification is possible, and
less than the Limit value. Similarly, the
micro-program action, Read or Write, is checked
to be permitted by the Access field of the
selected capability before the Store operation
is allowed to complete. Fault interrupts are
generated if any violation of the capability is
attempted.

Clearly the system places great reliance
upon the validity of the capability registers
and the data held by them. Therefore a
considerable number of checks are involved when
loading and using capability registers which

together ensure that no single hardware or software
failure can pass undetected by one or other of the
checking mechanism. These mechanisms include a
twenty fou~ bit sum check. parity checks and
register addressing checks.

Six basic capability manipulation instructions
are provided which permit the programmer to 'Load'
capability registers, 'Pass' capability blocks
from one procedure to another, 'Call' and 'Return'
from sub-routines, and 'Changing Process'.:" In all
these cases, however, the Base, Limit, Adcess
Field valuea of the capabilities manipulated are
set by the operating system and not directly under
the programmers control.

ltESISTU

A PROCESS CAPAIILITY TAllE
I HUD Ill POSS!ll Y Ill C6)

TH£ SYSUM CAPABILITY TAUL£
IHUD IN Cc I

SCLECTED CArAJILITY IIECISTEII
(CO - CTI

STORE

Fig.6 The Loac1 capability sequence,.,

The selection of the Base, Limit and Access
Field is arranaed v5a the System Capability
Table held in one of the 'hidden' capability
registers. Within this 'map' is described all
the currently available blocks referenced in
main store. Each user of the system, has a
set of 'capabilities'. Each capability specifies
an Access Field and the offset of one of the 3
word packets held in the 'map'. The Capability
manipulation instructions reference the
available 'capabilities', this in turn enables
the hardware to select and load the assigned
Base, Limit and Access Fields into the
Capability registers of the Processor. Thus
the logical capability is converted into a physical
address at run time.

It must be stressed that although the programmer
is at liberty to load into a register the assigned
Base and Limit values of any of his available

capabilities he cannot alter either the values
of his own set of logical capabilities, or the
corresponding physical Base and Limit values.
rhis is effected by disallowing the WRITE DATA
facility on a capability block.

Theref~re at all times, the range of Memory
locations which can be accessed is limited to
the available 'capabilities' and the corresponding
Base Limit values held in the System Capability
Table.

Fault Detection and Recovery

:tn order to protect the working system from
progressive collapse due to the migration of
faults through the system, the Processor performs
a Fault Interrupt i11111ediately the fault condition
is recognised, and before any actual capability
violation can occur. The Fault Interrupt
sequence is critical in order to preserve the
system security and therefore in understanding
the system recovery mechanism. The hardware
sequence is consequently described in some
depth, Reference 3 elaborates the system
philosophJ, and recovery sequence ensuing after
a hardware fault.

The actions executed by the microprogram
are repeatable and subsequent fault indications
cause the sequence to be re-attempted.

1

2

FAULT ENTRY

+
NULLIFY ALL CAPABILITY

REGISTERS EXCEPT
START UP BLOCK

+
PRESERVE FAULT INDICATORS

+
3 INCREMENT START UP

AREA TO NEXT MODULE

+
4 RELOAD SYSTEM CAPABILITY

TABLE FOR START UP SEQUENCE

+
5 MCHANGE PROCES~

TO
START UP PROCESS

Pig. 7 The Fault Interrupt Sequence

Firstly the currently loaded Base and L1m1t
values are corrupted to give invalid parity detection.
This ensures that even given incorrect sequencing
through the Fault Interrupt microprogram any attempts
to access the memory locations of the previously
running Process are prevented ..

Secondly the Fault Indicator register is stored
into a hidden register to preserve the fault
indication. The Fault Indicator ~egister is then
cleared.

Thirdly, the Start J't Capability Register
C (S) is incremented by 2- · so that it now
references a different memory module. This ensures
that during multiple fault conditions the Processor
attempts to 'Start Up' from each of the available
store modules in turn until it succeeds.

Fourthly, the Capability Register referencing
the System Capability Table C(C) is reloaded with
a Sumcheck, Base and Limit value held as the first
three entries defined by the Start Up Capability

register C(S). The block thus loaded references
a new and limited set of Base and Limit values
available to the Start Up Process.

Finally the Change Process microsequence
is attempted using the Capability held as the
fourth entry in C(S).

When each of these steps has been executed
successfully the Fault Interrupt Process is
activated. This Process will run vith a limited

set of mem0ry locations available thus preventing
interference with other Fault Free Processors.

The pre-requisite of the Fault Interrupt
sequence is that at least one valid copy of the
5.tart Up Block and the associated Program and Data
block exists in any one of the equipped Store
modules. Similarly if the Processor has a
hardware failure which prevents the successful
activation or completion of the Start up Process
the hardware is condemned to an eternal cycling of
the Fault sequence in an endless attempt to recover.

Note that the system recovery sequence which
follows a fault detection can be made as rigorous
as the application requires, Reference 3
discusses this in more detail.

On··Line Diagnostic Facilities

In order to achieve high reliability at
reasonable cost the Mean Time to Repair faulty
modules must be reduced to a minimum. In broad
terms this has tvo effects. Firstly, the
possibility of a second failure within the critical
part of the system during the 'do'W'tl time' of the
first module is minimised, thus improving the
system reliability, or alternatively, for & fixed
reliability the number of redundant modules of any
one type is minimised thus reducing system cost.

SYSTEM 250's diagnostic software ana maintenance
procedure is an integrated system which minimises
the system repair time. The novel aspect of this
system is concerned with Processor diagnostjc
software.

Processor diagnostics are normally an
extension of functional test programs, They

· are run on suspect machines in the hope that the
fault will not be serious enough to prevent the
successful completion of the test program. Out­
put is then produced which indicates the faulty
component. There are two hazards in this
approach, the first is that the fault could reside
in the 'hard core' of the machine and either prevent
the successful output of any message, or faulty
output may be obtained, second, the processor,
although suspect, requires the use of system
resources in order to run and output any message.

For System 250 this is unacceptable for two
crucial reasons. Firstly, the whole nature of
the design is oriented towards a 'hard core'
whichincludes the whole machine, it is in this
r,ay that faults are indicated immediately.
Secondly, faulty processors are trapped in the
fault recovery sequence deliberately so that
they cannot make use of systems resources.

However, as a consequence of Syotein 250's
multiprocessor philos9phy, it has been arranged
that the diagnostic routines run on a working
processor which then interrogates the suspect
machine.

PROCESSOR PROCESSOR

'----+-----' IHf OCAGtilOSTIC rNffRFACI

PEAIPk(ll'AL
OEYIC(

Each Processor module has an optional
'Diagnostic Interface'. This interface is
exactly the same in operation as the Store and
Peripheral Interfaces connected to the Store
Bus. Each Processor can therefore be connected
to the Test Interface of one of the other
machines in the System, either directly or via a
Multiplexor, The internal logic of each processor
is therefore addressed as memory locations. The
appropriate 'Capabilities' must be loaded into
the hardware registers of the interrogating
processor in order to address the suspect machine.

A set of C011mands are provided as part
of the Diagnostic Interface which facilitate
the operation of certain essential functions.
STOP MAIN PROCESSOR CLOCK

START MAIN PROCESSOR CLOCK

PERFORM SINGLE SLOT WORKING

PERFORM SINGLE INSTRUCTION WORKING

REPEAT A PARTICULAR INSTRUCTION

STOP AT A PARTICULAR INSTRUCTION ADDRESS

STOP AFTER "n" SLOTS

STOP AT A PARTICULAR MICROPROGRAM SLOT

STOP AT A FAULT CONDITION

MONITOR MICROPROGRAM CONTROL SIGNALS

FORCE MICROPROGRAM CONTROL SIGNALS

MONITOR INTERNAL REGISTERS

FORCE INTERNAL REGISTERS

Fig.9 .The Diagnostic Interface Commands

In the simplest terms the registers can be
loaded with a known pattern, clocking functions
can be performed and the register can be
exalllined and compared with a known result.
Discrepancies are isolated to single paths and
the results indicate far greater fault resolution
than is possible by traditional methods.

The diagncstic package will provide fault
analysis down to one board (or a small number
ofboards when, for example, 'wire-or' functions
are faulty). ·

Conclusions

Each characteristic of SYSTEM 250 was
conceived to satisfy one or more of the design
requirements detailed at the start of th;s
paper.

A SYSTEM 250 CHARACTERISTIC I THE REOUIREMENl

MODULARITY REDUNDANCY CONTINUITY OF

CAPABILITY PROTECTION }

MULTIPROCESSOR TRAF-FIC SHARING
FAULT DETECTION AND RECOVERY SERVICE

ON- LINE DIAGNOSTICS

STANDARD SOFTWARE INTERFACES EASE OF
STANDARD HARDWARE INTERFACES t
MODULARITY . EXPANSION,ABIUTV

TO EVOLVE,
MULTIPROCESSOR FLEXABILITY
DATA COLLECTION AND DISTRIBUTION & POwt:R/COST

CAPABILITY PROTECTION }
STANDARD HARDWARE INTERFACES
STANDARD SOFTWARE INTERFACES

RATIO

SYSTEM
PARTITIONING &

SECURITY

FiQ.10 The System Characteristics

While not exhaustive, it is hoped that
this paper, in conjunction with the others
presented by my colleagues, has indicated the
principles of operation of SYSTEM 250 its
architecture, and its power. •

References

1. D.C. Cosserat - 'A Capability Oriented Multi­
Processor System for Real-Time Application'
presented at this Conference.

2. D. Halton - 'Hardware of SYSTEM 250 for
Communication Control' Proceedings of the
International Switching Conference, Boston, Mass.
June 1972.

3. C.S. Repton - 'Reliability Assurance for
SYSTEM 250 a reliable, Real-Time Control Systl!l'I'
presented at this Conference.

Acknowledgement

I would like to thank the many colleagues on
whose work this paper is based and the Directors
of the Plessey ·company for permission to publish
it.

------ - ----------------

RELIABILITY ASSURANCE FOR SYSTEM 250
A RELIABLE, REAL-TIMF. CONTROL SYSTEM

C. s. Repton

Plesaey Co. Ltd.
Liverpool, England

Summary

System 250 is a multi-processor system designed
for real-time communication applications where very
reliable operation is required. The initial appli­
cation of this system (control of a telephone ex­
change) is required to achieve a mean time between
failure of 50 years, where a failure is defined as
a system outage lasting over ten minutes.

The paper describes in a general way the
problems involved in providing this degree of
reliability, and some solutions which can be adopted,
The approach which is being used in the design of
System 250 is described.

Particular emphasis is placed on the initial
stages of recovery which ensure that a fault-free
system configuration is set up and that a basic
minimum set of programs are correctly loaded and
worki·ng, allowing the system to bootstrap its way
back into full operation. The hardware and software
mechanisms used to achieve this basic level of
recovery are described in some detail, and the
methods used to secure these mechanisms themselves
against the effect of fault conditions are also
considered.

Introduction

The application of computer syttems to real­
time control situations is rapidly expanding.
Many of these applications, such as air traffic
control and communication systems, are essentially
continuous activities which demand very reliable
control systems. This means that the design of
highly reliable computer systems is becoming in­
creasingly important. This paper describes the
methods used to secure a real-time, multi-processor
system (System 250) against failure and discusses
some of the problems involved in providing reliable
system operation.

System 250 has been designed for communication
applications, such as control of telephone
switching, where continuous, reliable operation is
required. A typical requirement of this type of
application is a mean time between system failure
of 50 years, where a system failure is defined as
an outage lasting over ten minutes.

Previous papers1 •2 have outlined the overall
configuration of System 250. The main features
are that the system uses a group of functionally
identical processor units connected to a group of
identical store units. This type of configuration
can be made to perform like one large, very powerful
computer, and yet its power can be economically
increased in small steps simply by adding more
processor or storage units.

Since all units are functionally identical any store
module can replace any other store module, and
similarly any processor unit r.an replace any other
processor. This means that equipment failures
can be catered for fairly simply. In the event
of a unit failure the faulty unit is isolated and
the functions of that unit are then reallocated to
other modules in the system which have some spare

· capacity.

The software which is used to control this
hardware configuration can usefully be c~nsidered
as a number of distinct layers or levels • As
each new layer of software is added to the system
it is used to extend, or present in a more con­
venient form, the facilities which are available,
In effect the first layer takes the bare facilities
provided by the machine instruction set and adds
to them by providing further facilities within
the software. This provides subsequent levels in
the hierarchy with an enhanced version of the
original machine, a kind of 'virtual machine'.
The additional levels use this extended machine to
produce further, more powerful facilities. Thus
as one progresses along the hierarchy the facilities
provided by the virtual machine at each level be­
come increasingly useful and powerful.

In the case of System 250 the first software
level takes the multi-processor, multi-store
system and converts it into a virtual machine which
appears to subsequent levels to be one large, very
fast processor with one large store. All the
problems assoc'ated with multiple processor op­
eration are handled at this initial level, and
subsequent layers need not consider the multi­
processor nature of the system. The next level
in the hierarchy provides convenient input/output
facilities and controls the backing store devices
such as discs, so that lower layers see a very
much larger store system than that provided by
the main store alone. The next level provides
operator communication and facilities such as
program assembly, editing, job control etc.
Finally on the last level come the application
programs which actually perform the real-time
operations (Fig. 1).

IASIC SUPERVISOR

INPUT/OIITPUT AND IMO<ING $TOIM ~ACILIT!l S

J0e CONTltOI...PAOGaAM As.s£MM..V, 0P£RATOfl COMMUNICATIONS ITC

APPLICATION

I

APPLICATION

2

Fig. 1

APPLICATION

J

Software Structure of System 250 ..

There may be several sets of application
programs in a system such as this. For example,
one central control system may control several
remote telephone exchanges, Other functions may
be required which are related to, but not part of
the main real-time activity, For example a • . ,
maintenance sub-system to allow on-line testing
may be added or a program development sub-system
to allow ~ew ~rograms to.be developed and debugged
before being introduced into the real-time system,

Recovery Mechanisms

Based on this broad description of System 250
let us now consider the type of facilities and
mechanisms which will have to be built into the
system to allow it to recover automatically from
fault situations,

Obviously the system will have to cope with
failures within individual processor units and
store modules, so that we require some means of
detecting that a fault has occurred and locating
the fault to a particular module, The faulty
module can then be isolated so that it cannot
interfere with the rest of the system. Finally
any data which may have been lost or corrupted
by the fault must be restored so that normal
operation can continue. Typically this will
involve reloading lost programs and data in the
event of a store fault, and abandoning or re­
constituting suspect data after a processor
failure.

The system will also havP to deal with software
!aul~s, On the basis of past experience it seems
1nev~ta~le_that even after thorough testing and
coumission1ng all but the smallest system will
still contain design errors in the software.
This means that the system will occasionally
behave unpredictably when certain rather rare

b • . , •
com inat1ons of data or timing ci.rcurnstances
occur. All that is required in this case is to
re~et any data which has been affected by the
fa~lure and restart processing using fresh data.
This type of data recovery mechanism is similar
to that required to deal with the after-effect
of processor failures, as described above.

Thus, in general, each recovery action includes
three distinct phases:- The first is the
detection that an error has occurred. The second
is an attempt to locate the fault to a particular
hardware unit. This may not succeed, either
because insufficient information is available or
b~cause the fault is caused by a software problem.
Finally the third phase will involve some form of
data recovery or restart procedure which will
allow the system to resume normal processing.

Within System 250 the mechanisms used at
each stage of recovery are as follows:-

The error detection mechanisms which are used
are:-

(1) fault detection circuits built into the
hardware.

(2), software conai1tency checks and time-outs to
monitor overall system performance.

(3) teat routines run in background mode.

The methods used to locate the fault to a
particular unit are:

(1) Persistent fault conditions reported by
c.heck circuits.

(2) If the error detection mechanism implicates
a parti~ula: unit or units (for example hardware
check circuits or test routines) a fault count
associated with the unit or units can be in­
cr~ented in order to d2tect persistently failing
devices.

(3) A localised test procedure can be used to
test units which are suspect as the result of
an error indication from a hardware check
circuit or failed test routine.

(4) The testing sequence can be extended to cover
all units within the control system.

(5) Ls a last resort units can be switched out
of system on a trial basis in an attempt to find
a viable system configuration,

There is obviously a very wide range of data
recovery and restart procedures which can be
adopted. We have found it useful to adopt three
stages of recovery action which provide
progressively more extensive restart facilities,
These are:-

(l) Process Restart Each process, or
transaction, in the system has a defined recovery
action which can be activated if that process
meets any form of error condition. The recovery
action involved- will vary depending on the nature
of the transaction, and these can range from
regenerating data areas, and restarting the
failed process in the case of a vital system
function, such as a disc handler, to simply
ending the failed process and printing
diagnostics.

(2) Area Restart Each functional area within
the system has a defined recovery action which
will allow read/write data to be regenerated
from duplicate files held on disc by that area.
This may allow complete data regeneration, but
more usually, some transactions will be abandoned
and only the most important functions will be
made restartable by storing redundant information
on disc, This type of restart is commonly
referred to as a 'warm start',

(3) Area Reload Each functio~al area also
~as a defined recovery action which will allow
processing to be restarted from read-only
information in duplicate, sum-checked files
held on write-protected areas of the backi11g
store. This form of recovery obviously involves
abandoning all current transactions, reinitialising
the system and then resuming processing new

..

transactions, This type of restart is coUDDonly.
known as a 'cold start'.

Recovery Procedures

We have now considered the basic elements
which are available for use in constructing
the required recovery procedures. Before
moving on to discuss the form taken by these
recovery procedures it is worth making the
following observations:-

(1) the hardware test and data recovery pro­
cedures involved can themselves disrupt system
operation, for example it is difficult to perform
a complete test on every hardware unit :in the
system without causing some disturbance to normal
on-line processing, and the various data recovery
procedures often abandon perfectly valid trans­
actions rather than attempt a complex validity
checking operation.

(2) the error indications do not always pin-
point the source of the fault or the identity
of the corrupt data. Processors may trigger
hardware check circuits as the result of
attempting to process invalid data corrupted by
faults elsewhere in the system, and it is impossible
to predict just how much data may have been dis­
turbed by any given software fault,

This means that it is very difficult to adjust
the recovery action so that the fault is
corrected and yet the disturbance to system
operation is minimised.

In the circumstances the best strategy is to
combine the various fault location and data
recovery/restart procedures into a sequence of
recovery actions. Initially the action which
causes least disruption to system operation is
used. If this fails to clear the fault, as
indicated by further error reports, then in­
creasingly powerful (and hence more disruptive)
recovery actions are used until the fault is
cleared, as indicated by the absence of further
error indications.

The sequence of actions which has been
adopted in System 250 is shown in Fig. 2.
Error indications which do imply the location of
a fault (hardware check circuits and failed te~t
routines) cause a fault count to be incremented
for the unit, or units involved. If one unit is
consistently implicated then the fault count in­
dicates this. A local testing procedure for the
suspect units is also activated. If either of
these mechanisms detect a consistent fault the
system is reconfigured to isolate the faulty unit.
In the case of a hardware check circuit indication
it is also necessary to restart the process
which was running at the time of failure as the
data associated with this transaction is now
suspect. Repetitive errors detected by hardware
check circuits within a short time interval
•uggest that the fault may be due to a software
problem within the failing area rather than a
hardware fault. Therefore in this case the

HAIIOWUI Oi&CII
CIIICUtTI

LOCAL TUT.
CH&Ck FMILT COIJMTa.

HCOOIJ·- i,
NICU$UY.

ll&ITAIIT l'AUll HOCll'o

LO<:AL nn.
CHICK rAULT COI.IMTI.

llECOH'1~U:.l IF
NlCUSARY.

RHTAIIT rAILE0 AAt:A

THTllounHU

LOCAL TUT.
CHICK l'AULT OOUHTS.

l;"fCOf-!f'IG\ff!'I IV
li!>.C:1"4J:V.

Gf:HERAL SYITt:W TUT
RlCONl'IGUllf IF

NEClUAIIY
GENlUL RHTART

GlNEIIAL nsnw TUT
IIICOl',trlGUIIE II'

H!!C[SiARY
Gl!N'tltAL llfLOA0

GINUIAL SYSTEM TUT
TR14L AfCOt'4~1GUAATION

GINIIIAL 11£1.0.t.0

Fig. 2

IIOP~CHCCIII

IIHTAIIT UIA

lt!POIITING 11110111

~equence of Recovery actions used by Sy4tg 250

recovery action is extended to cover the failing
area rather than just the process involved.

Faults detected by sof~ware checks cause a re­
start of the functional area detecting the fault.
If the error is due to a software pro.blem within
that area this should clear the fault.

Further repeated error indications of any
kind cause a general system test to be performed
which thoroughly tests all control system elements.
Ai.1y faulty units are isolated and the system is re­
started by means of an Area Restart applied to all
functional area~ This procedure will eliminate
any data corruption in main store and will recove,
the vast majority of all solid hardware faults.

If further error indications are generated
t12.n another general system test is initiated in
the hope of detecting possible intermittent
hardt.•are faults. Any faulty units are isolated
and the system is reload~d by means of an Area Re­
load applied to all functional areas. This will
reload the system using duplicate read-only files
from backing store. This eliminates any
possibility that further system failures can be
caused by corrupted data generated by an earlier
fault.

After this stage the only faults which can re­
main undetected are intermittent hardware faults or
solid faults not detected by the test routines.
Therefore, as a last resort, subsequent fault
reports initiate another general system test in a
further attempt to detect intermittent failures.

If no new faults are found one of the units is
switched out on a trial basis (trial reconfiguration)
The system is then reloaded by applying an Area
Reload to all functional areas.Repetitive appli­
cation of this procedure will eventually
eliminate faulty units which remain undetected by
the test routines.

Overall Structure of the Security System

The previous section discussed the sequence
of actions which should be followed when an error
is detected within the central control system.
The group of programs concerned with controlling
this sequence are referred to as the basic
recovery system, and form an additional layer in
the software hierarchy (Fig. 3).

IASIC RrC~.., IYITU,.

IIASIC W?llMMldl

1""11'/0U~ AND UCICINC: ST!m(FA.CILITIU

J09 COHTflOL, AHUA9LY, OO'i:AAT'OR COMYUNIC,.TIOMS

APPLICATION APPLICATION

2

APPLICATION

I

Fig. 3

nc.

Software Structure showing Basic Recovery System

When discussing the functions provided by the
various levels in the hierarchy it was shown how
the basic supervisor, which contains the
scheduling and store allocations routines,
effe·ctively concealed the multi-processor, multi­
store nature of the system from the lower levels.
Programs involved in lower levels could be written
on the assumption that they would run on one large
processor with one large store. The basic
recovery system performs a similar function in
that processor and store failures are dealt with
at this level, and lower 1evelsin the hierarchy
do not nee&,to be concerned with the possibility
of hardware failures. They can be written on the
assumption that they are always held in a fault­
free store module, and are obeyed by a fault-free
processor. Thus although several copies of the
basic recovery procedures must be available to
protect this level against store failures,
programs on lower levels do not need to be dupli­
cated. If a store module fails, the programs
held in that module will be reloaded into a new
module by the basic recovery system. Therefore,
placing the basic recovery system at the highest
level in the hierarchy reduces to a minimum the
amount of program which must be replicated. It
also simplifies the system since lower levels do
not need to consider the possibility of hardware
faults.

The software checks required to provide an
error detection mechanism should be distributed
throughout the system so that each level contains
its own independent set of checks. Similarly it
is convenient to provide data recovery and restart
procedures on a per level basis. This means that
each level becomes an independent functional

••,or\l Of Sof l•Ot•

IM\cct•• lrron
IASIC ttc:ovuw SYSTEM i--·-~-•_ .. _ •_0_• _A•_ .. _.,_._

AcltOftl

IA.SIC SUPf:AYISOA

INPuT,ouTPUT ANO IACKtNG STOA[FACILITl[S

JOI CONTROL. ASSEM8lY. OPERATOR COMUUHICATIONS

Dote Re-cower, Oftd ~
Aitttar t Proc:Hurwt ~

Fig, 4
Software structure showing Basic Recovery System
& Co=unication Paths to the Rest of the Syst~a
area, with its own set of software checks, and
its own restart procedures.

The software checks report any
errors to the basic recovery system which can
then initiate the appropriate recovery action,
which may involve invoking restart procedures
provided by the lower levels, This modified
hierarchical diagram is shown in Fig. 4.

This type of system structure means that as
one progresses down the hierarchy not only do
the number of facilities available increase, but
it is also possible to make wider assumptions
about the state of health of the system. Below
the basic recovery system programs may be written
on the assumption that all hardware faults have
been eliminated from the system. The only
responsibility that these lower levels have with
respect to system reliability is to maintain an
overall measure of performance through the soft­
ware checks on that level, to report consistent
faults to the basic recovery system on the
assumption that the degradation is due to some
form of system fault, and to provide the standard
recovery procedures. Below the level of the
basic supervisor it may also be assumed that
reliable store allocation, and scheduling facili­
ties are available, since it is the responsibility
of the software checks and restart procedures
within the basic supervisor to ensure this.
Below the input/output level it may also be
assumed that reliable system peripherals are
available, and, for example, an application
program written to test a particular piece of
application hardware can ignore possible side
effects due to faults on the input/output channels.
It is th~ responsibility of the input/output
routines within the operating system to eliminate'
these fau.lts. This expanding level of confidence
continues right down to the application/operating
system interface where it may be assumed that
processors, stores, input/output c'annels and
system peripherals are working correctly and that
the full range of operating system facilities

ia available. Of course, it is the responsibility
of the application programs to cover the effects
of faults in any special peripherals controlled -
wholly by that application.

Thus the overall reliability of the system is
based on a hierarchy of guarantees. At the top of
the hierarchy the basic recovery system provides
fault-free stores and processors. Working trom this
base the other levels can then guarantee fault··free
input/output devices and operating facilities to
the application programs. By using this wider
base the application programs can now secure their
own specialised peripherals against failure. In
many ways this hierarchy of guarantees parallels the
functional build-up of the system, which is based
on using the facilities provided by higher levels
to make extensive or sophisticated facilities
available to lower levels.

Securin~ the Security System

In the scheme outlined above everything
depends on the ability of the basic recovery
system to guarantee fault-free processors and
stores to the lower levels. One of the main
problems involved in producing a workable security
system is to ensure that the basic recovery system
itself is not disabled by fault conditions.
Obviously several copies of these recovery programs
must be provided in sep~rate store modules to protect
them against store failure, and some form of
protection must be provided to prevent these multiple
copies being overwritten by a faulty processor.
The recovery programs must also be accessible to
several processor moaules, to cover processor
failures.

These requirements could be most easily met
by noninating some, or all, of the processors as
'fault handling' units and providing each with a
private store module containing a copy of the
recovery programs, Fig. 5. In the event of a
store or processor failure one, at most, of the
store/processor pairs would be disabled and unable
to take effective action. The other processors
would then be able to clear the fa•Jlt and recovery
system operation.

c01,,1M0f'f couwoii.
STO•(STORE I

PIIOCUSOII

COMMON

ST'ORl 2

Fig. 5

l'tlOCIUOII

2

COMMON
STORI J

NOClHOIII

S stem Dia ram illustrating 'Store per fault-
andlin rocessor a

As each of the store modules containing the recover
pr~grams would be accessible to one processor only,
this would protect the recovery programs from
faults in other processors.

However, this method does have considerable
disadvantages, Because each of the fault
handling processors accesses a particular copy
of the recovery programs when a fault is detecte<l
it is difficult to prevent faults in the store
associated with these programs also disabling
the processor. This effect considerably
reduces the mean time to failure of the processors.
In addition this scheme can involve a considerable
cost penalty, particularly in large systems,
because a store module per 'fault handling'
processor is required for the recovery programs.

In contrast System 250 allows any processor
access to all copies of the recovery programs
(see Fig. 6). This means that:-

(1) failure of a store containing a copy of
the recovery programs does not also disable a
processor.

(2) it is only necessary to provide sufficient
copies of the recovery programs to protect the
system against simultaneous store failures.

COMMON
STOii£ I

COMMON
STORE 2

SECONI COPY OF
llf.COV£RY ROUTINES

COMMON
STOii£ J

PIIOC:USOR

2

COMMON
STORE 4

System diagram illustrat1A~·s~stem 250 Approach
to Fault Handling

This arrangement is made possible by two
features of the processor hardware:-

(1) the capability mechanisi• which was
described in a previous paper, provides a very
secure store protection facility, and protects
the recovery programs against the possibility
of being over-written in the event of a hardware
or software fault.

(2) the fault interrupt mec~anism, also
described in a previous paper, which together
with the test program in the first section of
the recovery programs, is used to control access
to the recovery programs.

To illustrate this scheme assume, for the
moment, that the only form of entry to the recovery

programs is via a fault interrupt. This !My be
an involuntary interrupt resulting from an attempt
to perform some illegal operation, or it may be
a deliberate attempt to invoke the recovery
mechani8111 because some error condition baa been
detected by the aoftvare. On ta.king a fault
interrupt the PP250 hardware first disables all
the current capabilities held in the machine, thus
preventing further access to store. It then
attempts to reload a new set of capabilities from
a pre-designated location in store. If thia is
completed successfully the resulting capabilities
are used to access the first part of the recovery
program. Thiu ia a teat program which io
arranged aa a m.ue. The only pouible exit fr0111
thia ma~e ia via a further capability which ia
creatf:d bit by bit aa the machine proceeds through
a aeries of teata. These teats are designed to
completely check the hardware and the 'read only'
blockD (programs an~ data) associated with the
recovery program. If an error io detected at
any stage then another fault interrupt is forced.
Thi• causes the proceaaor to reattempt the capabili­
ty load from the next available atore module (aee
Fig. 7).

Fig. 7
Securit fault interru t mechanism

This mechanism provides a dual function.
Firat it ensures that a faulty processor is
constrained to endlessly cycle through the
storage system in an attempt to find a test
program which it can obey successfully. The
only capabilitiec available to the faulty
machine at this time are associated with the teat
program, so that it is unable to interfere in any
way with the operation of the on-line system,
Secondly it allows fault-free processo13to search
through the storage system to find an uncorrupted
version of the recovery programs,

The mechanism described above, although
considerably better than the 'copy per processor'
method, does have some disadvantages. The first
is that before any recovery action can be taken
the processor involved must obey a lengthy (1')1'!-
200 msec) test program. The second is that all
the recovery progra.~s must be replicated, Both

·of these precautions are unnecessary in some fault
situations where the fault is unlikely to disable
the on-line system in any way, and the recovery
action is fairly simple. For example, software
faults which corrupt data within application

programs are u~likely to affect the normal running
of other programs. Once the fault condition is
detected it is only necessary to activate the data
recovery/restart routines for the particular
application to recover system operation,

This rather minor kind of fault can be dealt
with quite adequately by programs which exist in th1
on-line system and run in the normal way. However
these programs do need some form of protect:i.on so
that if they themselves are disabled by the fault,
or are unable to cope with the fault situation in
some other way, then the more powerful, replicated
programs can be activated, Thus s01?1e form of
monitor mechanism which can detect the failure
of these unreplicated programs is required, as
abown in Fig, 8,

r--♦-- MONITOR t----r---------.
I
I
I
I
I
I

UNRU•I..ICA~D
MCOVIAY
,-OGIIAMS

Fig, 8
Securit S stem usi a combination of re licated
& unreplicate recovery programs

In the proposed implementation of System 250
fhe monitoring mechanism is made an implicit
part of the unreplicated recovery programs.
These recovery programs are activated by a
process called the 'System Monitor'. This
process runs at regular intervals and scans ~h~
system fault indicators. I! any fault condit~on
is detected then the appropriate recovery routine
is activAted. If persistent or multiple error
conditions are detected then this implies that
the fault is beyond the scope of the simple,
unprotected, recovery programs, which are only
intended to cope with relatively minor faults.
In these cases System Monitor will force a fault
interrupt, thus activating the second line of .
defence, the replicated recovery programs. This
is illustrated in Fig. 9.

Of course it is important to protect.the
system against the ~ossibili~y of the failure o~
this monitoring action. This can only happen in
one of three ways:-

(1) the monitor can fail 'sane', detect that
all is not well and force a fault interrupt.

(2) the monitor can fail 'dead', so that
either it does not run at all, or d~es not
perform any meaningful action when it does run.

r

(3} the monitor can fail 'crazy' so that it app­
arently runs correctly at regular intervals and
yet does not respond to fault conditions.

-ICATl:0
ltlCOYlllY
PIIOGIIAMI

-• NORMAL ON•LINI
Ntoct PAOCIS$1NG

twit

Fig. 9

llLICT
NUT
COPY

~ic Structure of System 250 Security !},z!tem

If the monitor fails 'sane' then the
replicated recovery system is activated
explicity by the monitor• and it can take
effective action to recovery system operation.
If the monitor fails 'dead' then an independent
time-out mechanism is used to force a fault
interrupt. This is equivalent to a periodic
'OK' signal which is used to reset a time-out,
thus indicating that the system is operating
correctly.

There remains the possibility that the
monotor can fail 'crazy'. The probability of
this happening can be reduced to any arbitrary
level by incorporating sufficient self-checks
into System Monitor, and ensuring that
sufficient overlapping, independent software
checks exist in the on-line system.

In general it is relatively easy to ensure
that if the system fails then eventually. some­
~here, one of the processors will generate a
fault interrupt, thus activiatin~ the replicated
recovery programs.

There is one final modification which can
usefully be made to the system illustrated in
Fig. 9. It is fairly easy to ensure that
even under the worst possible fault conditions
at least one processor will generate a fault
interrupt at some stage. Therefore the fault
interrupt mechanism is used to ensure that the
replicated recovery programs. and the associated
powerful recovery actions. are activated when a
major system collapse does occur. However, an
isolated fault interrupt is symptomatic of
nothing worse than a transient hardware
fault, or simple software error. Ideally
these should be dealt with by the unprotected
programs, using recovery actions which cause
minimum disruption to system operation.

Only repetitive or multiple fault interrupts
should drive the system into the rather more drastic
recovery measures adopted within the replicated
recovery programs.

Thi, feature can be incorporated fairly eaoily.
After a proceaaoT has successfully completed the
test program which forms the first part of the
replicated programs, it places a message in a
location which is scanned at regular intervals by
System Monitor. When this meua6e is detected•
the other error indications are checked together
with a fault count for the processor which gener­
ated the message. Provided that this is an
isolated occurrence the monitor proce1s pas1es
capabilities to the faulted proesaor which allows
it to rejoin the on-line system. If thil particular
processor ha, 1uffered a aucceaaion of fault in­
terrupts it is aasumed that it either ba1 an inter­
mittent fault. or a solid fault which is not
detected by the test program. In either ca1e it
is not passed the capabilities which allow it to
rejoin the on-line system but ia forced back into
the teat program.

If System Monitor does not respond to the
message then the assumption is made that either
System Monitor has faile~ or that multiple error
conditions have occurred. In this ca1e the
processor acces1es the replicated recovery
programs (Fig. 10).

INITIAL ltlCO\'IIIY

PAOGAI.MI -, _
I
I
I
I
I
I
I
I
I ___ _1 __ _

.. _ ---
RIPLICATID

AICOYI ..
pttOG•AMI

Hllltrfll,t

Fig. 10

Detailed Structure of System 250 Security System

Thus the general scheme is that in addition
to the replicated programs which provide the basic
level of recovery another group of programs is
provided which run in the normal way as part of

r

the basic supervisor. These progrmns form the
first line of defence and provide a number of
simple recovery actions which do not grea~ly .
disturb system operation. The general hierarchical
structure shown in Fig. 3 is therefore extended by
splitting the basic recovery system into t~-o sections
(Secondary Recovery and Initial Recovery). Only
the essential kernal of this recovery system
(Secondary Recovery) is replicated, and ~he rest
(Initial Recovery) forms part of the basic
supervisor (Fig. 11).

l,ICONOAIIY RtCOVtAY 1·

INITIAL l'<ECO·,'UY ANO 1.UIC WP1ERVISOA

.109 CONTIIOL. AU[M9LY, O!'tAATOA COWlot\.lttlCATIONS

APPLICATION APPLICATION

2

Fig. 11

APPLICATION ,

General Operation of the Basic
Recovery System

nc.

. So far we have discussed the sequence of
actions to be taken under fault conditions, and
the overall structure of the basic recovery
system. Fig. 12 illustrates how these ~wo are
combined. Briefly, Initial Recovery which
receives the initial error indications, is used
to implement all the recovery actions which do
not in~olve a complete system restart. The
replicated programs of Secondary_Recove:y are
used to provide the recovery actions which
involve a complete system test and general
restart.

To illustrate how this system reacts to the
various kinds of failure which can occur it is
useful to consider some specific examples.

First consider a software fault in one of the
application areas. Typically, this type of
fault causes programs to behave unpredictably when
presented with certain, rather rare, combinat~ons
of data or timing circumstances. The error is
detected either by the software checks within the
application itself, or by hardware che~k circuits
whe·:i the program involved attempts an illegal
operation, such as writing into a read-only block.

If the error is detected by software then the
response of the basic recovery sys~em is.to force
a restart of the failed area. This action
reconstructs data held in store and restarts
processing new transactions, which is generally
sufficient to clear the fault.

If the error is detected by hardware then,
· after various hardware test procedures, the
particular transaction involved is restarted.
This may be sufficient to clear the fault, but
if it is not then subsequent faults will force
an area restart.

In very rare circUIDstances the area restart
may fail to clear the fault. This can only
happen if the duplicate information held on
backing store, which is used to reconstruct
essential read write data, has been consistently
corrupted in such a way as to cause further
failures when it is used .as part of the restart
procedure. This type of fault is cleared by a
subsequent recovery action in the sequence which
involves a complete system reload, thus clearing
any read/write data which has been generated by
previous system operations.

Software faults in the operating system area,
the basic supervisor for example, are dealt with
in a similar way. However in this case the
initial response to the error is more severe since
an area restart involving any of the levels in
the operating system will also imply a restart
of all the application areas, rather than just
the single application area involved as in the
previous example.

Transient faults in p~ocesso:rs or store modules
have the effect or corrupting data, without
permanently disabling a hardware unit, so that the
immediate after-effects are indistinguishable from
software faults. Thus the rem~ks made above also
apply to this type of failure mode,

Consider the possibility of a processor fault.
Recent trials on the system indicate that faulty
processors usually take a fault interrupt very
q~ickly after the incidence of a fault, within one
or two milliseconds. Also recent tests have shown
that the 'fault capture' level of the test program,
which is obeyed by a ~rocessor after taiing a
fault interrupt, is very good, better than 99.5%.
Thus the vast majority of processor faults will
very quickly cause the faulty Machine to take a
fault interrupt. It is then trapped in the maze
of the test program, which isolates it from the
rest of the on-line system.

In general store faults will have an obvious
a11d immediate effect on the system. Usually all
the processors receive a parity fault indication
very soon after the fault has occurred. This
effectively disables tlie on-line system so that
recovery is achieved through Secondary Recovery via
a general test of the system and a complete warm
start.

Hardware faults which are not located by the
test routines, either because they are inter­
mittent or beause the tes1: routines are not com­
prehensive enough, are difficult to recover.
They may be located by means of fault counts, or
in the case of intermittent faults by repetitive
use of the hardware test programs. However if
none of these mechanisms do locate the fault then
th~ final, last ditch, action taken by the recovery
system is to attempt to find a viable configuration
by means of trial recongiguration. How quickly
this is achieved depends on the nature of the fault.
If the fault is seriously affecting system op­
eration, so that its effects can be detected very•
earily, then a medium sized system can work through
all possible combinations of the central control

equipment in something like two minutes. If Acknowledgement
the fault only causes the failure of the
occasional transaction then the system is
performing useful work. Provided the reduced
performance is acceptable then the automatic
recovery m-echanisms will not be activated at aJ.t,
since the system is, to all intents and purposes,
operating satisfactorily. This type of non­
urgent fault will eventually be cleared by the
maintenance engineers, who receive information
regarding all error indications recorded.

I would like to thank the many colleagues on
whose work this paper is based and the
Directors of the Plessey Company for permission
to publish it,

References

1, K, Hamer-Hodges 'Fault Resistance and
Recovery within System 250' - Presented at
this conference.

2. D. C. Cosserat 'A Capability Oriented
Multi-Processor System for Real-Time
Applications' - Presented at this Conference.

3. E. Djikstra 'The Structure of 'THE'
Multi-programming System" Com. A.C .M. •
Vol. 11, No. 5 Hay, 1968, pp. 341 - 346

IHIT IAL RECOVERY

per1ittut
, .. 11

nt fault SYSTEM

MONITOII

FAULT CONTIIOL

SECONDARY RECOVERY

hrOtr
favltl

.11
,. rtjti• .. , .. ,

FAULT CONTROL

FAULT
INT(III\UrT

1 ,
1 P(ftSISTENT FAULT 1

INTEMUPT

-r·----
FAILED TEST , PERSISTENT FAUI.T - SUIS[UNT I SUtsEIUENT -i SUlstQUENT -

N.\IOW(
TEST.

CH(Cl FAULT
COUNU

IIECOllflGUII(
If IIEC(SSUY

JU tilt eat fev II
4tttctt4 .,

iat1rwah

IIOUTIIIE l)[T(CTlD IT 5/W FAULT I FAULT Z FAULT 3

LOCAL HA IOWM[
TEST.

CHECI FAULT
COUNTS

IIECONmUH
IF N£CESSUY

IIEPUT FAILED
TE5T.

CHECK FAULT
COUNTS

IIECOMRGUI\£
If NECESSARY

ll(JOIN

OIi· LiNE

SYSHM

I

- - - - .l

IOANAL ON - LIN£ ,aQC(UIIC

GENEIIAL
SYSTEM

TEST.

IIECONflGUII[
If NECESSARY

CUEUL
USTAIIT

Fig._ 12

Implementation of System 250 Security System

GU£RAL UNUAL
SYSTEM SYSTEM

TEST. TEST.

ll[CONflCUII(TIIIAL
IF 1!£CESSAIIY RE COIIFICIIII[

- - - - -

.. ,.,,.,,

- -
.,, ...

r
..,o
t~
•c ~= a~

:»UWCTURE AND INTERNAL COMMUNICATIONS OF A TELEPHONE CONTROL SYSTEM

J, Crompton

Plessey Co. Ltd,
Liverpool, England.

Summary

Current plans for the introduction of
computer controlled telephone exchanges to
Great Britain envisage the formation of a new
telephone network which will interwork with the
current network and ultimately replace it, The
basic module of the new network is a Switching
Unit, which is controlled by a Processing
Utility. Switching Units are composed of a
number of subsystems, and each subsystem is
subject to standard definition& both for its
interfaces and for the function it performs.
The hardware/software ratio of each subsy~tem
is at the discretion·of the manufacturer, but
subsystems can be regarded conceptually as hav­
ing a hardware component and a software control
component. The action of the subsystem control
programs is coordinated by a further control
program, and a great amount of interaction is
necessary between these progr6Ills during the
setting up of a telephone call. The software
mechanisms necessary for internal message hand­
ling and process creation must be chosen with
great care bearing in mind the various trade­
offs possible, processor utilization, and the
definitions of the subsystem standard interfaces.

Introduction

Development of the British Telephone Net­
work is guided largely by the Advisory Group
on System Definition (AGSD) - a body consisting
of representatives from both the Administration
(British Post Office) and from the various manu­
facturers of telephone equipment. Any future
computer controlled telephone exchange which is
to be used in the United Kingdom will be subject
to constraints laid down by AGSD.

The concept currently proposed by AGSD is
to form an "over.lay" network of Stored Program
Control (SPC) exchanges. By this is meant a
system which could start off life in a very small
way - possibly a single exchange - interworking
with the existing telephone network, and which·
could then grow in discrete stages. This would
form a new, small network of SPC exchanges,
which interfaced with the old network at selected
points. As the new overlay network grows, it
will slowly replace parts of the old, until
eventually the entire system will consist only of
SPC exchanges.

System Structure

Switching Units

The basic module of this new network is
known as a Switching Unit. Switching units are
of several different types, and each type can have
many different designs and constituent elements.
Basically, the function of each switching unit is
to provide facilities whereby various telephone
circuits can be monitored and interconnected un­
der the instructions of a centralized control.
This control may be located with the switching
unit, but equally may be remote and operate via a
data link. The centralized control is known as
a Processing Utility. The two most co11D11on types
of switchin~ unit are:-

1. Subscriber Switching Unit
The Subscriber Switching Unit interfaces directly
with the telephone user, by means of wires fro■
the subscriber's premises. Fig. 1 indicates
schematically a subscriber switching unit, which,
with its interface to the existing network, could
provide the start of the new network.

SUBSCRIBER

SWITCl11NG

UNIT

EXISTING
TRUNKS

Fig. 1

PROCESSING
UTILITY

TYPICAL INTERCONNECTION OF SWITCHING UNITS

2. Main Switching Unit
The Hain Switching Unit is normally connected
to a number of subscriber switching units, and
also may be connected to other main switching
units. This is indicated schematically in
Fig, 2,

Although figures 1 and 2 show the switching
units as connected by a single data link to a
single processing utility, more complex arrange­
ments will apply in practice, for security
reasons.

- --- -~ ------

EXISTING
LOCAL
NETWORK

EXISTING
TRUNK
NETWORK

SUBSCRIBER
SWITCHING

UNIT

MAIN
SWITCHING

UNIT

SWITCHING

UNIT

EXISTING
TRUNKS

Fig. 2

SWITCHING UNIT

UTILITY

TO OTHER
PROCESSING

UTILITY

MAIN SWITCHING UNIT

Subsystems

Each of these switching units is composed
of a number of distinct elements,known as sub­
systems. Subsystem units are so chosen to
provide interfaces which can be rigidly defined,
and remain constant between equipment manu­
facturers, enabling equipments of various
deE;igns to interwork satisfactorily. Each sub­
system performs a distinct function within its
interface boundaries; it is the declared inten­
tion of AGSD to define these functions and
interfaces. Some typical functions which can
readily form subsystems, however, are:-

1. Subscribers Subsystem
This subsystem provides the complete interface
between a particular group of subscribers and
the rest of the network. It provides all system
co11D11unication with the subscriber - for example
it will provide dial tone and busy tone to the
subscriber, and will accept dialled or keyed
digits from him. The subsystem also performs
some switching and concentration of subscribers
lines.

2. Transit Subsystem
This subsystem provides a switching facility,
and thus permits different subsystems to be
interconnected and cross connected as desired.

3. Interface Subsystem
This subsystem is used to connect the new net­
work with the old. It must provide all types
of signalling and all facilities in use on the
particular existing junctions with which it is
connected.

4. Manual Board Subsystem
This subsystem provides the second "human" inter­
face into the system (the first being the subscrib­
er). The subsystem must provide all facilities
necessary for operational staff to provide
assistance to subscribers, monitor and test lines
etc.

5. Miscellaneous Terminations Subsystem
This subsystem contains the various devices re­
quired by the administration - such as time
announcement machines, message recorders, facili­
ties for interconnecting multi-subscriber calls.

The configuration of Fig. 2 is redrawn in
Fig. 3 to show some subsystems which could typi­
cally be involved, and the ways in which they
could interface with each other.

UISTING
LOCAL

lfTWOll

UISTIIG
TIUNlS

SUISQIIER
SIII\ITSTtH

SUHOIIH
SUISTSTlH

l

INT£UAC[
SUISTSHN

I

INTUFACl
SUISYST(H

z

I __

, __
SUUCIIHI

SWITCNING UIIT

TUUIT
SUISUTIII

I SUltCIIHI

I SWITUIN5
HIT

I
I -----

TUISl1

SUISTSTEN

l

SUHYSTlM

IITUPl.Cl
SUISYSTlM

u1n11,
TlUNIS

GTNU HAIN
5111TCNIN5

Cl.!!_!!£_ -

MISC
TC~NINATI0N
SUISHTtM

TUNSIT
SUISTST£N

)

NUUAL.
IOUD

SUISTSTlN

HAIN SWITCN 115 UNIT

Fig. 3

INTERCONNECTION
OF SUBSYSTEMS

Subsystem Structure

Subsystems are chosen to perform particular
functions within defined interfaces; the manner
in which the functions are performed will depend
upon the method of implementation chosen by the
particular manufacturer. This detailed implemen­
tation can vary greatly - not only between manu­
facturers, but within manufacturers as technolo­
gies advance. In particular, the amount of work
performed by the hardware and the amount performed
by the software can vary. For example, consider
'the hardware/software trade-offs which are possi­
ble in the design of the switchblock part of a
subsystem:-

The basic requirement is to connect one
particular input from a group of inputs, to a
particular output. Fig. 4 shows a group of 12
inputs and 6 outputs, and a possible method of
performing the connections by two stages of
switching - each point marked X represents a
switch or "crosspoint". It can be seen that by
judicious operation of two crosspoints, any input
can be connected by one of several paths to any
output - provided that the paths are not already
in use for another connection. Several methods
of arranging this connection are possible: for
example:-

1. Use of "intelligent" hardware, which would
accept the identities of the two terminals to be
connected, effect the connection if possible, and
then return a "success" or "fail" message. This
solution requires a minimum of software.

2. Use of simple hardware, which would merely
activate or deactivate any nominated crosspoint,
as instructed. This solution requires all the
work to ~e done by the software - even to the
extent of keeping a "map" of the crosspoints, in
which busy ones are marked, and from which an
available path can be selected, details of which
are sent to the hardware.

3, Use of hardware falling between these extremes
for example hardware which would activate and
de-~ctivate nominated crosspoints, check and
report upon the success of the operation, and
also provide facilities for the software to
interrogate the state of nominated crosspoints.
This solution leaves the "intelligence" with the
software, but provides security for the current
details of crosspoint settings.

4. Use of solution 2. or 3. above, but placing
the necessary software in a local mini or micro
processor, which acts upon instructions received
from the processing utility.

-- .--------, - I
I I - I
I - I - I

I - I - I I - I -,
o-+o-- I ... ,_ I r--------.

I __ J I ._ ___ - I I : - I
I

I I
r--------1 I

I - I I
I ' I I -- I I I

- I I I

- I I I H--o -· I l----- I I -c.:::..a - I - I I -
I -- I I

r-------,
' : L--- - .. ~J

l
I

I

I

I) >-HJ L ___
-c=-o

--
TYPICAL 2-STAGE SWITCHING

Since it is possible for any subsystem to
contain software, it is logical to consider each
subsystem as consisting of two interdependent
parts - the hardware, and the software within
the processing utility. Any program structure,
therefore, will conceptually contain a number of
distinct subsystem control programs, but in the
limit of complex hardware or local mini-processor
implementation, the control programs will be
simple message handlers.

These subsystem control programs must be
able to transmit and receive messages to and from
their hardware counterparts. The physica.l means
of this message transmission may include a data
link, and most probably will include methods of
multiplexing and de-multiplexing along some
message transmission medium - for example the
normal 1/0 handling software of the virtual
machine in the processing utility could inter­
leave messages for different subsystems alor.g a
single highway. The content of these messages
is private between the hardware and software
parts of the subsystem (though the format may be
affected by the communications mediun1); the
transmission means should ideally be transparent.
The interposition of additional hardware and
software between the subsystem hardware and its
control program in order to resolve message
addressing and transmission problems in no way
·,iolates the concept -of the subsystem with def­
~ned interfaces; it merely provides a trans­
parent interconnection. Figure 5 shows schem­
atically the type of arrangement that could
exist for the system depicted in Figure 3.
Each hardware subsystem has its software counter-

. part in the processing utility. The points marked
X indicate interfaces which are likely to be def­
ined as AGSD standard interfaces - these are
interfaces at the software end of the subsystems;
other interfaces subject to definition lie at the
hardware end at the human interfaces.

r---- -----, r - - - -- - - - - - - - -, r- - - - --- -,
I I I I I I TIU51T TIAHIT I I TIHMT

flQ S'ffl I I IITllfAU IIT[Ut.Cl Hllflll IIIIC TIAUIT IIUl,ll I I
I S.Hl'ffl

IQfflflll
I MIIITl1'lll Sl!HrRlll I I - Sllll t MIIAT SIDI HHI I 4 I
I I I I t UISsnnN - I I > I

I I I
I I I I

I
I I I I I

.. ,, """" n,un I I hlA TIAIWll It llff I I IATA TI.U~I rTILITl I
_____ ...J

L - - ---- -·- -- ---- ...J
, _____ I -----

HIICIIIU IIAII SftKIIIU
lWITtNIH SWITUIIIII WITCll■I ••rr wn ••n

HARDWARE
fUClHIU ITIUTl IIPIIT / tltPtT HIIILU

SOFTWARE

SH5TSTINS toittf<ll
PIOUAlll

.,.
IAHLU
PIHUII

Fig. 5 TYPICAL INTERCONNECTION OF HARDWARE AND SOFTWARE SUBSYSTEMS

In practice the arrangement will probably
differ from that shown in Figure 5. Frequently
a single manufacturer will be responsible for a
complete switching unit - if not for several co­
located switching units. Two or more similar
hardware subsystems could be controlled by a
single control program, orerating upon several
data bases. Also, economics could dictate that
certain pieces of equipment be shared by several
subsystems. The hardware part of each subsystem
consists of several devices, which are each treatL
ed as peripheral units. One of these equipments
for example, which is often expensive, is called
a Marker. The marker is the peripheral which
controls the operation of ~rosspoints in the

svitchblock, as explained previously. A marker
~,y well have the capacity to control more than
ot\e switchblock, so its costs could- be shared
a1UOng subsystems located together. Figure 6
indicates a possible method of re-structuring
the software configuration of Figure 5. The
handling programs for the individual peripherals
(such as the marker) are shown, and these
programs communicate with the subsystem control
program proper, which must co-ordinate the ope.ra­
tion of the peripherals in its subsystem hardware.
Only one subscriber subsystem control program is
shown - this will handle all three subsystems from
three separa-te data bases; similarly for the other
subsystems.

PIOC(Ua uuun IIPVl/tutPUT ■AUUI

Fig. 6

TYPICAL SUBSCRIBER SUBSYSTEM PROGRAM

I/.
NISSAH

■UILII _,..
tuen30S murr
.. -..u

A software structure i1 now starting to
emerge. A number of software "modules" have
been identified, aud some have software inter­
faces which are the subject of future definitions
The word module is used in the sense of a self­
contained piece of software, which could be writ­
ten and tested in isolation. As yet, no means
of co-ordinating the operation of these modules
has been mentioned; it is here that the concept
of a Control Area is introduced. A Control Area
consists of a group of switching units which are
controlled by the same processing utility, and
within which it is possible to select overall the
path that will be used by a particular call, before
that path is set up. In Figure 6, a software
module called Area Control has been introduced,
and this co-ordinates the operation of the in­
dividual subsystem control programs. The area
control program can be regarded as holding the
intelligence for the call, and the subsystems
execute specific commands given by area control.

Internal Communication

Consider the type of interaction that will
be necessary between the software modules of
Figure 6 - for example when a subscriber in sub­
scriber subsystem 1 wishes to make a call to a
subscriber in subscriber subsystem 3 (Figure 3).
The first indication that a call is to be made
is given by the subscriber lifting off his hand­
set; this event is detected by a peripheral called
a Subscribers Line Circuit within the subscribers
subsystem. The event will pass via the I/0 mess­
age handler, peripheral handler and subsystem
control program to the area control program which
must examine its records to determine the type
of service permitted to the particular subscriber.
If dialling out is permitted, the subscriber sub­
system will be instructed to connect -the approp­
riate type of digit receiver, in anticipation of
keyed or dialled digits, to connect any super­
visory circuits that may be required, and to
connect dial tone to the line. As digits are
received, they pass via the chain to the area
control program until eventually sufficient digits
have been received to determine the destination
of the call. After checking the availability and
status of the called subscriber, instructions must
be provided to the appropriate subsystems at the
appr6priate times to provide ringing current to
the called subscriber, ring tone to the calling
subscriber, to remove these conditions, to set up
a path via the two transit subsystems, to check
upon the continuity of the path - and eventually
to clear down all connections. Should the dest­
ination lie in a different control area, messages
must be sent either directly to the destination
control area or to some intermediate (transit)
control area which must itself activate appropriate
subsys~ems.

It can be seen then, that within the software
structure which has now emerged, there is a great
requirement for the passing of messages between
individual modules. Careful study must be given
during system design to the mechanisms that will

be involved in mea1age handlin,, and the closely
allied topic of process creation. It is a~aumed
that all modules are written in a re-entrant
manner, so that conceptually one or 1118.ny pro­
cesses using a particular module may be in
existence siaultaneoualy. The term "process"
is here used in the dynamic sense, to mean the
serial execution of the code in a module or
program. A process may be associated with a
particular module, or it may be associated with
a message, for.example, and cross module boun­
daries.

Figure 6 shows that each module contains a
discrete number of "message porto" or, in other
worlis, has a number of interfaces across each
of which particular types of message could be
expected. An extremely simple mechanism could
be to place at each such input port a message
queue. This queue is loaded by the output port,
which generates the message, calling upon a
common, centralized queue loading mechanism.
The call to the queue loader specities the DUii!

of the wanted queue, and the loader locates the
queue by using a close association with the
space allocation mechanism, (Absolute addresses
could not be used, because in a system of this.
nature with a requirement of many years mean time
between failures, it is necessary to move prog­
rams and data around, when system components
either fail or are released for scheduled
maintenance). Once one of these modules is
scheduled, it runs until all its queues have
been emptied, at which point it terminates. The
time scheduling algorithm can be constructed to
any arbitrary degree of complexity. This system
has several attractions - the time and apace
overheads involved are quite small, and there is
no danger of messages getting out of sequence and
"jumping their queues". Also no contentions
arise for file access; since only one process
exists on any particular module at any instant
access to that module's in-core- data bases need
not be-subject to any lock and key control.

This system, however, could become quite
inefficient as traffic grew. The number of
processes is equal to the number of software
modules - but it is quite probable that the
processing utility consists of a number of •
processors working in parallel in a load-s~aring
manner. The precise number of processors 1a of
no interest to the applications programs, provided
that collectively the processors provide suffic­
ient processing power; the supervision and co­
ordination of the individual processors can be

. f h II • l ~. II regarded as a function o t e virtua mac,11ne
The net result, however, is that several processes
may be able to run concurrently, The system of
one process per module forces all telephone calls
to queue for sequential service by the area con­
trol program, whereas logically there is no
reason why separate calls should not be processed
in parallel by use of several processes on
several processors - thus removing what co~ld
become a serious bottleneck on processor time

•

utilization as traffic iocreased.

Such considerations lead to the proposal of
creating a separate· process for each telephone
call. As this process completes execution of one
module, it transfers control to the next module
required by the particular call, Data associated
with a particular call is carried in the "process
base", or workspace associated with the process,
and this reduces the overhead of message passing
between processes. A number of difficblties are
found with this approach, however. All messages
entering the system require a certain amo\.ll\t of
processing before thay can be associated with a
particular call, and it is only when a message has
travelled a certain distance that it can be picked
up by its parent process - and this distance will
depend upon the poict at which the parent process
last suspended; Parallel processing of certain
activities associated with a call is not;. possible
for exll!llple, in the' subscriber call described
previously, the parallel actions by the two sub­
scriber subsystems of setting up ring tone and
ring current would need to be carried out se­
quentially (although of course each subsystem
could be simultaneously active upon different
calls). Even more serious difficulties are en­
countered when a call requires to be handled by
a second (or third) control area - it is not feas­
ible for the process to cross control area boun­
daries. This approach also entails a process
crossing a subsystem "standard interface" which
ideally should be defined in terms of messages
only.

Yet another possibili•ty is to use a process
per module per telephone call. This approach
requires a message passing mechanism which can
deal with a high message rate, and which can
associate messages wuth processes. The combina­
tion suggests a centralized system which uses
semaphores for communication, and which is
intimately associated with the time scheduler.
The system must also allow infoTU1ation to be
passed with each semaphore, Such a general
mechanism is currently being implemented by one
telephone manufacturer; it is conceptually sim­
ple, and flexible in application, permitting
easy system expansion.

The mechanism readily provides association
of messages with processes, and provides for re­
activation of suspended processes. Great care must
be exercised in its use, however, because of the
apace and time overheads inherent in.such an
approach. Even though it provides a useful mech­
anism for the process per module per telephone
call. Some problems still remain with this
approach - such as the file locking problem men-

•tioned previously. For example, in a subsystem
which contains a switchblock,Alnd which maintains
a store image of that switchblock, each call
which uses the image to select a path will re­
quire unique access to the image for duration of
the path choice algorithm; some method of constrain,
is necessary if a process per module per telephone
call approach is used •

Obviously, none of these aystema repreaenta
black or white; all are shades of grey. An
attractive compromise is to treat different typea
of mod~le in different ways. The I/O meauage
handler iw really a function of the processing
utility, but can be considered here as being in
two parts; input, ana output, The input part ia
a single process. which is scheduled at regular
intervals, and once scheduled runs cyclically
until all incoming messages have been handled.
As each mei:sage arrives, the addresses and other
information from the Data Transfer Utility will
identify the device from which the message orig­
inated, and the message is then passed to the
appropriate peripheral hn.~dler (by the semaphore
mechanism), where a process is activated for the
particular message. The output part is also a
single process, which is activated whenever a mess­
age.is sent to it via a semaphore, from any peri­
pheral handler program; having dealt with the
message, the process suspends itself awaiting the
next metisage.

1be peripheral handler processes, in the case
of input, will "funnel" down to a single procesa,
which runs the subsystem control program. This
funnelling can be achieved by private queues, in
the case of unshared peripherals, or by use of the
semaphore mechanism for peripheral handlers shared
between subsystems. The single subsystem process
can now service its messages in cyclic fashion,
and has no contention problems for its files.
In the case of subsystem control programs con­
trolling several different subsystems, each on
its own database, there is one process per data­
base.

At control area level, yet another arrangement
applies. COlllllunication with the subsystem control
programs is handled by the semaphore mechanism,
thus maintaining a message interface. Each instruc­
tion given to the subsystem is accompanied by a
"tag" which uniquely identifies the particular
call (for example a call number) and this tag is
later returned by the subsystem when reporting
upon the action performed. Within the area con­
trol program, a process is initiated which handles
the originating part of all calls. When the
initial message comes from the subscribers sub­
system indicating that the handset has been
lifted, this Originating Call Process allocates~
the unique tag to the call and handles the
early parts of call set up. This single process
limits itself to handling a fixed number of calla
the nu:nber is dependent upon the structure of the
processing utiiity; once the number is exceeded,
a further parallel process is created to handle
subsequent calls (thus ensuring equitable use of
processing resources). Once sufficient is known
about the destination of the call, a second pro­
cess is created, This process may be in the
same control area or a different control area,
depending upon the destination of the call -
creation of the second process, however, ensures
that all calls ea.~ be treated in standard manner,
whether they be inter or intra control area, .The
second process may be a Terminating Call Process,

but the originating and terminating call processes
can be separated by one or more Transit Call Pro­
cesses• if the call ne·eds to pass through several
control areas. Each such process runs in a cyclic
manner, and will itself create further processes
as the traffic load increases. All these processes
existing in the area control program colll!llunicate
with the subsystems by the semaphore mechanism.

Conclusions

This approach is by no means the only possible,
but it does illustrate the type of mechanisms
which are necessary for the organizing of inter­
communication between various parts residing in­
side an SPC computer system. Most of the work
currently being performed in this area is subject
to change, since the definition of the interfaces
is not yet available. As detailed implementation
of SPC progresses, however, manufacturers are
solving problem~ in increasing detail, thus per­
mitting interface and functional definitions
to be arrived at which are both efficient and
enduring.

Acknowledgement

The author wishes to thank his many coll­
eagues upon whose work this paper is based and
the Management and Directors of The Plessey
Company for permission to make this information
available.

----- •------- -----------------

